Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Củ Cà Rốt Gaming
Xem chi tiết
Lê Lan Hương
7 tháng 2 2016 lúc 13:23

gọi 3 phân số đó là
1/a; 1/b; 1/c
vậy ta có: 1/a + 1/b +1/c = 4/n
suy ra n(ab+bc+ca)=4abc (1)
bài toán trên trở thành chứng minh phương trình (1) luôn tồn tại 1cặp nghiệm nguyên(a,b,c)

OoO Kún Chảnh OoO
7 tháng 2 2016 lúc 13:24

Mình có lời giải này, nếu có chỗ nào sai thì các bạn góp ý nhé:
Nếu n = 3k. Khi đó:

\frac{4}{n} \ = \ \frac{1}{n} \ + \ \frac{3}{n} \ = \ \frac{1}{n+1} \ + \ \frac{1}{n (n+1)} \ + \ \frac{3}{n} \ = \ \frac{1}{3k+1} \ + \ \frac{1}{3k(3k+1)} \ + \ \frac{1}{k}

Nếu n = 3k + 2. Khi đó:

\frac{4}{n} \ = \ \frac{3}{n} \ + \ \frac{1}{n} \ = \ \frac{3}{n+1} \ + \ \frac{3}{n(n+1)} \ + \ \frac{1}{n} \ = \ \frac{1}{k+1} \ + \ \frac{1}{(3k+2)(k+1)} \ + \ \frac{1}{3k+2}

Nếu n = 3k + 1. Khi đó:

\frac{4}{n} \ = \ \frac{3}{n} \ + \ \frac{1}{n} \ = \ \frac{3}{n-1} \ - \ \frac{3}{n(n-1)} \ + \ \frac{1}{n} \ = \ \frac{1}{k} \ - \ \frac{1}{k(3k+1)} \ + \ \frac{1}{3k+1} \ = \ \frac{1}{k} \ + \ \frac{1}{-k(3k+1)} \ + \ \frac{1}{3k+1}

Asuka Kurashina
Xem chi tiết
Minh Hiền
Xem chi tiết
Trần Thị Loan
20 tháng 8 2015 lúc 9:16

\(\frac{4}{n}=\frac{1}{n}+\frac{3}{n}\)

+) Xét n = 3k ( k là số tự nhiên > 1)

\(\frac{4}{n}=\frac{n+1}{n\left(n+1\right)}+\frac{3}{n}=\frac{1}{n+1}+\frac{1}{n\left(n+1\right)}+\frac{3}{n}=\frac{1}{3k+1}+\frac{1}{3k\left(3k+1\right)}+\frac{1}{k}\)

+) Xét n = 3k + 1:

\(\frac{4}{n}=\frac{1}{n}+\frac{3}{n}=\frac{1}{n}+3.\left(\frac{1}{n-1}-\frac{1}{n\left(n-1\right)}\right)=\frac{1}{n}+\frac{3}{n-1}-\frac{3}{n\left(n-1\right)}=\frac{1}{3k+1}+\frac{3}{3k}+\frac{-3}{3k\left(3k+1\right)}=\frac{1}{3k+1}+\frac{1}{k}+\frac{1}{-k\left(3k+1\right)}\)

+) Xét n = 3k + 2:

\(\frac{4}{n}=\frac{1}{n}+\frac{3}{n}=\frac{1}{n}+3.\left(\frac{1}{n+1}+\frac{1}{n\left(n+1\right)}\right)=\frac{1}{n}+\frac{3}{n+1}+\frac{3}{n\left(n+1\right)}=\frac{1}{3k+2}+\frac{1}{k+1}+\frac{1}{\left(3k+2\right).\left(k+1\right)}\)

Vậy Với mọi n > 4 thì 4/ n đều phân tích thành tổng của 3 phân số khác nhau có dạng 1/n 

=> đpcm

đặng tiến công
Xem chi tiết
Trần Công Cường
Xem chi tiết
Kazawa Yuuki
28 tháng 11 2019 lúc 16:19

ban tham khao bai nay https://olm.vn/hoi-dap/detail/12493245057.html

Khách vãng lai đã xóa
Nguyễn Linh Chi
28 tháng 11 2019 lúc 16:35

Câu hỏi của Ruxian - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo!

Khách vãng lai đã xóa
MARKTUAN
Xem chi tiết
Bùi Hồng Sang
Xem chi tiết
Diệu Anh
26 tháng 4 2020 lúc 18:39

a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d

=> (14n+3) -(21n+4) \(⋮\)d

=> 3(14n+3) -2(21n+4) \(⋮\)d

=> 42n+9 - 42n -8 \(⋮\)d

=> 1\(⋮\)d

=> 21n+4/14n+3 là phân số tối giản

Vậy...

c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d

=> (6n+4) - (21n+3) \(⋮\)d

=> 7(6n+4) - 2(21n+3) \(⋮\)d

=> 42n +28 - 42n -6\(⋮\)d

=> 22 \(⋮\)cho số nguyên tố d

\(\in\){11;2}

Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11

Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ

Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11

Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được

Khách vãng lai đã xóa
NGUYỄN PHÚC HUY
Xem chi tiết

Gọi d=ƯCLN(n+1;n)

=>\(\left\{{}\begin{matrix}n+1⋮d\\n⋮d\end{matrix}\right.\)

=>\(n+1-n⋮d\)

=>\(1⋮d\)

=>d=1

=>ƯCLN(n+1;n)=1

=>\(\dfrac{n+1}{n}\) là phân số tối giản

nguyễn ngọc linh
Xem chi tiết
Akai Haruma
5 tháng 2 lúc 23:28

a/

Gọi $d=ƯCLN(n+1, 2n+3)$

$\Rightarrow n+1\vdots d; 2n+3\vdots d$

$\Rightarrow 2n+3-2(n+1)\vdots d$

$\Rightarrow 1\vdots d$

$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$

Akai Haruma
5 tháng 2 lúc 23:32

b/

Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé. 

Bạn xem lại đề.