cho a,b là hai số tự nhiên khác 0 chứng tỏ rằng a/b + b/a bé hơn hoặc bằng 2
Cho a, b là số tự nhiên khác 0, chứng tỏ rằng
a) a/b+b/a lớn hơn hoặc bằng 2
b) (a+b)×(1/a+1/b) lớn hơn hoặc bằng 4
1. Cho a,b,c,d là các số tự nhiên khác 0 và a/b bé hơn c/d . Chứng tỏ rằng a * d bé hơn b * c.
2. Cho a,b,c là các số tự nhiên khác 0. Chứng tỏ rằng :
a). a/a+b + b/b+c + c/c+a lớn hơn 1
b). b/a+b + c/b+c + a/c+a bé hơn 2
Các bạn nhớ ghi lời giải chi tiết nhé !
Cho các số tự nhiên a,b(a,b khác 0) sao cho a+1/b+b+1/a có giá trị là số tự nhiên.Gọi d là ước chung lớn nhất của a và b . Chứng minh rằng a+bl lớn hơn hoặc bằng d mũ 2
trọn hết giây cuối cùng, hưởng thụ trước khi chết
mik sẽ vặn ngược kim đồng hồ trở lại trc công nguyên
Cho hai số tự nhiên a,b ( a, b khác 0) có tổng bằng một số nguyên tố p
Chứng tỏ rằng UCLN( a; b) =1
2 số tự nhiên a và b chia cho M có cùng một số dư, a lớn hơn hoặc bằng b. chứng tỏ rằng a-b chia hết cho M
Gọi a=nM+d và b=eM+d (n,e E N và n>e)
a-b=nM+d-(eM+d)=nM-eM=M(n-e) chia hết cho M (đpcm)
Gọi d là số dư của a và b
Gọi k là thương của a và M
Gọi n là thương của b và M
suy ra a-b=(k*M+d)-(n*M+d)=(k-n)*M
Mà a-b=(k-n)*M !!! Suy ra a-b chia hết cho M
a=M.k+r
b=M.n+r
a-b=M.k+r-(M.n-r)=M.k-M.n=M.(k-n) chia hết cho M(đpcm)
Câu 1:
1) với a,b là stn khác 0, chứng tỏ rằng :
a/b+b/a bé hơn hoặc bằng 2
2) Cho x là stn , tìm GTNN của biểu thức p=x/3+3/x+2+1
(làm được 2 like)
Cho a,bb là 2 số nguyên khác 0. Chứng tỏ rằng a.b hoặc bằng tổng |a| lần b, hoặc bằng tổng |a| lần -b
BÀI 1: CHỨNG MINH RẰNG 4 SỐ TỰ NHIÊN BẤT KỲ BAO GIỜ CŨNG CÓ HIỆU HAI SỐ CHIA HẾT CHO 3
BÀI 2: CHO 3 SỐ TỰ NHIÊN a,b và c.Trong đó a và b chia cho 5 dư 3 còn c chia cho 5 dư 2
a CHỨNG MINH RẰNG MỖI TỔNG HOẶC HIỆU a+b+c hoặc a+c-b;a-b chia hết cho 5
b Mỗi tổng hoặc hiệu a+b+c; a+b-c ; a+c-b có chia hết cho 5 không
Bài 3 : Chứng minh rằng một số tự nhiên được viết bằng toàn chữ số 4 thì không chia hết cho 8
Bài 4: Tìm 2 số tự nhiên khác 0 biết tích của 2 số gấp 2 lần tổng của chúng
Bài 5:Cho a và b là các số tự nhiên khác 0 và a>2;b>2 . Chứng minh rằng axb > a+b
Làm nhanh trong ngày hôm nay và ngày mai hộ mình nha
trân thành cảm ơn
Hai số tự nhiên a và b chia cho m có cùng một số dư, a lớn hơn hoặc bằng b. Chứng tỏ a-b chia hết cho m.
Gọi a=nM+d và b=eM+d ﴾n,e E N và n>e﴿
a‐b=nM+d‐﴾eM+d﴿=nM‐eM=M﴾n‐e﴿ chia hết cho M ﴾đpcm﴿
Theo bài ra , ta có:
a : m = q ( dư n )
b : m = k ( dư n )
ta có: a = q.m + n
b = k.m + n
ta lại có : a - b = ( q.m + n ) - ( k.m + n )
=> a - b = q.m - k.m = ( q - k ).m \(⋮\) m
=> a - b chia hết cho m ( đpcm )
Vậy a - b chia hết cho m