Cho hình vẽ sau:
CM: I là trung điểm của EFCho đoạn thẳng EF, gọi I là trung điểm của EF. Trên đường trung trực của đoạn thẳng EF lấy D (D khác I) A chứng minh ∆DIE=∆DIF B Trên tia đối của ID lấy điểm K sao cho ID=IK Chứng minh DE//KF Vẽ cả hình và giải giúp tui vs nha :))
Cho HBH ABCD, I là trung điểm của AB, k là trung điểm của CD. Gọi E, F, G, H lần lượt là trung điểm của DI, CI, BK, AK.CMR: IK, EF, GH đi qua 1 điểm
đã vẽ được hình chỉ cần nêu cách giải
có E,F,G,H theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA
suy ra EF là đường trung bình của tam giác ABC nên EF//=1/2AC (1)
GH là đường trung bình của tam giác ADC nên GH//=1/2AC (2)
Từ (1) và (2) suy ra EF//=GH nên EFGH là hình bình hành
Vì có hai cạnh đối song song và bằng nhau
Bài 2)
a) AK=1/2AB; CI=1/2CD
mà AB//=CD nên AK//=CI suy ra
AKCI là hình bình hành
do đó AI//CK
b) Xét tam giác CDN
có I là trung điểm CD mà IM//CN
nên M là trung điểm DN hay DM=MN (3)
(Theo định lý đường thẳng đi qua một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba)
Tương tự xét tam giác ABM cũng có BN=MN (4)
Từ (3) và (4) suy ra DM=MN=NB
Bài 3)
Câu a) làm ý như câu b) bài 2)
bâu b) chứng minh giống ý a bài 2 ta được AECF là hình bình hành
nên AF//CE => FM//EN (5)
Tam giác ABM=tam giác CDN (cgc) suy ra AM=CN
mà EN=1/2AM (t/c đường trung bình của tam giác)
FM=1/2 NC (t/c đường trung bình của tam giác)
do đó EN=MF (6)
từ (5) và (6) suy ra EMFN là hình bình hành.
câuc) I và J lần lượt là trung điểm của BC và AD
nên IJ đi qua trung điểm của EF (7)
MN và EF là hai đường chéo của hình bình hành ENFM nên MN đi qua trung điểm của EF (8)
Từ (7) và (8) suy ra 3 đường thẳng IJ, MN, EF đồng quy tại 1 điểm
Bạn hỏi dài quá. lần sau mỗi lần hỏi thì chỉ nên ghi 1 câu thôi, người trả lời đỡ ngại
và bạn nhanh chóng có được đáp án.
Chúc bạn học giỏi.
cho tg ABC gọi I là trung điểm cua AC trên tia đối IB lấy điểm E sao cho IE=IB, trên tia đối của tia BA lấy điểm F sao cho BF = BA, EF cắt BC tai K
CMR: K là trung điểm EF
Vẽ hình jup mik nha mik vội lắm r
Cho tam giác DEF vuông tại D có DE = 3cm và DF = 4cm . Gọi I là trung điểm của EF . Tính độ dài cạnh EF
Vẽ hình giúp mình luông nha
mình dùng pitago thôi
\(3^2+4^2=25=5^2\)
EF=5 cm
Cho tam giác ABC có ba góc nhọn. Vẽ . Vẽ tại I, vẽ tại K. Lấy E, F sao cho I là trung điểm của HE, K là trung điểm của HF, EF cắt AB, AC lần lượt tại M, N.
a) Chứng minh và chu vi bằng EF
b) Chứng minh AE = AF
c) Nếu biết . Khi đó hãy tính các góc của tam giác
Cho hình vuông ABCD, trên canh AB lấy điểm E. Từ D vẽ đường thẳng vuông góc với DE cắt BC tại F. I là trung điểm của EF
G là điểm đối xứng với D qua I
a) CM: Tứ giác DEGF là hình vuông ( đã làm đc)
b) CM DG,EF,AC đồng quy
Sau một hồi suy nghĩ thì mk đã làm đc rồi nha
Cho tam giác MNP vuông tại M, MN = 10cm; MP = 8cm. Vẽ đường trung tuyến MK của tam giác MNP.
a) Tính MK?
b) Gọi E, F lần lượt là trung điểm của MN, MP. Chứng minh tứ giác MEKF là hình chữ nhật. c) Gọi I là giao điểm của MK và EF; J là trung điểm của EP. Chứng minh IJ vuông góc với MN và tính IJ.
Cho tam giác MNP vuông tại M, MN = 10cm; MP = 8cm. Vẽ đường trung tuyến MK của tam giác MNP.
a) Tính MK?
b) Gọi E, F lần lượt là trung điểm của MN, MP. Chứng minh tứ giác MEKF là hình chữ nhật.
c) Gọi I là giao điểm của MK và EF; J là trung điểm của EP. Chứng minh IJ vuông góc với MN và tính IJ.
Cho tam giác MNP vuông tại M, MN = 10cm; MP = 8cm. Vẽ đường trung tuyến MK của tam giác MNP.
a) Tính MK?
b) Gọi E, F lần lượt là trung điểm của MN, MP. Chứng minh tứ giác MEKF là hình chữ nhật.
c) Gọi I là giao điểm của MK và EF; J là trung điểm của EP. Chứng minh IJ vuông góc với MN và tính IJ.