a)chứng tỏ tổng của hai số lẻ liên tiếp là một số chẵn
b) chứng tỏ tổng của ba số tự nhiên liên tiếp luôn chia được cho 3
ai làm nhanh nhất minh tích có ming cần gấp lắm 10 phút nữa nha!
chứng tỏ rằng :
a) tổng của ba số tự nhiên liên tiếp là một số chia hết cho 3
b) tổng của bốn số tự nhiên liên tiếp là một số không chia hết cho 4
c) tích của hai số tự nhiên liên tiếp thì chia hết cho 2
d) tích của ba số tự nhiên liên tiếp luôn chia hết cho 3
cứu mình
a, Gọi 3 số tự nhiên liên tiếp là n; n+1 và n+2
Tổng chúng: n+(n+1)+(n+2)= 3n+3\(⋮\) 3 \(\forall n\in N\) (đpcm)
b, Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3
Tổng chúng: \(n+\left(n+1\right)+\left(n+2\right)+\left(n+3\right)=4n+6⋮̸4\forall n\in N\left(Vì:4n⋮4;6⋮̸4\right)\left(đpcm\right)\)
c, Hai số tự nhiên liên tiếp là k và k+1
Tích chúng: k(k+1) . Nếu k chẵn thì k+1 lẻ => Tích chẵn, chia hết cho 2
Nếu k lẻ thì k+1 chẵn => Tích chẵn, chia hết cho 2
(ĐPCM)
d, Ba số tự nhiên liên tiếp là m;m+1 và m+2
Tích chúng: m(m+1)(m+2)
+) TH1: Nếu m chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH2: Nếu m chia 3 dư 1 => m+2 chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH3: Nếu m chia 3 dư 2 => m+1 chia hết cho 3 => Tích 3 số chia hết cho 3
=> Kết luận: Tích 3 số tự nhiên liên tiếp chia hết cho 3 (đpcm)
a: Gọi ba số liên tiếp là a;a+1;a+2
a+a+1+a+2=3a+3=3(a+1) chia hết cho 3
b: Gọi 4 số liên tiếp là a;a+1;a+2;a+3
a+a+1+a+2+a+3
=4a+6
=4a+4+2
=4(a+1)+2 ko chia hết cho 4
c: Hai số liên tiếp thì luôn có 1 số chẵn, 1 số lẻ
=>Hai số liên tiếp khi nhân với nhau sẽ chia hết cho 2
d: Ba số liên tiếp thì chắc chắn sẽ có 1 số chia hết cho 3
=>Ba số liên tiếp khi nhân với nhau sẽ chia hết cho 3
Chứng tỏ rằng :
a) Tổng của 4 số tự nhiên chẵn liên tiếp là một số chia hết cho 4
b) Tổng của 5 số tự nhiên chẵn liên tiếp là một số chia hết cho 5
Làm giùm mk nhanh nhé mk cần gấp ai nhanh thì mk tích
a) Gọi 4 số tự nhiên chẳn liên tiếp là a ; a+2 ; a+4 ; a+6
Theo đề bài ta có:
\(a+\left(a+2\right)+\left(a+4\right)+\left(a+6\right)\)
\(=a+a+2+a+4+a+6=4a+12\)
Vì 4a chia hết cho 4 và 12 chia hết 4.
\(\Rightarrow4a+12\)chia hết cho 4.
Vậy tổng của 4 số tự nhiên chẵn liên tiếp là một số chia hết cho 4.
b) Gọi 5 số tự nhiên chẵn liên tiếp là: a ; a+2 ; a+4 ; a+6 ; a+8
Theo đề bài ta có:
\(a+\left(a+2\right)+\left(a+4\right)+\left(a+6\right)+\left(a+8\right)\)
\(=a+a+2+a+4+a+6+a+8=5a+20\)
Vì 5a chia hết chia 5 và 20 cũng chia hết cho 5.
\(\Rightarrow5a+20\)chia hết cho 5.
Vậy tổng của 5 số tự nhiên chẵn liên tiếp là một số chia hết cho 5.
a) Gọi 4 số liên tiếp là a , (a+1), (a+2) , (a+3)
suy ra tổng của 4 sồ liên tiếp là :
a+a+1+a+2+a+3 = 4a+ 4 + 1
Bài toán vui: - Hãy chứng tỏ rằng tổng của ba số tự nhiên liên tiếp luôn chia hết cho 3 - Hãy chứng tỏ rằng tích của ba số tự nhiên liên tiếp luôn chia hết cho 6
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2. => a+(a+1)(a+2)=a+a+1+a+2=3a+3. 3a chia hết cho 3,3 cũng chia hết cho 3 => tổng này luôn luôn chia hết cho 3
Bài toán vui:
- Hãy chứng tỏ rằng tổng của ba số tự nhiên liên tiếp luôn chia hết cho 3
- Hãy chứng tỏ rằng tích của ba số tự nhiên liên tiếp luôn chia hết cho 6
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2.
=> a+(a+1)(a+2)=a+a+1+a+2=3a+3.
3a chia hết cho 3,3 cũng chia hết cho 3
=> tổng này luôn luôn chia hết cho 3.
a) Nếu tổng của hai số tự nhiên là một số lẻ thì tích của chúng có chia hết cho 2 không.
b) Chứng tỏ rằng với hai số tự nhiên bất kỳ khi chia cho m có cùng số dư thì hiệu của chúng chia hết cho m và ngược lại.
c) Chứng tỏ rằng với 6 số tự nhiên bất kỳ luôn có ít nhất hai số tự nhiên mà hiệu của chúng chia hết cho 5.
d) Chứng tỏ rằng tổng của 5 số tự nhiên liên tiếp không chia hết cho 4.
e) Chứng tỏ rằng tổng của 2 số chẵn liên tiếp luôn chia hết cho 8.
g) Cho 4 số tự nhiên không chia hết chia hết cho 5 , khi chia cho 5 được những số dư kháu nhau . Chứng minh rằng tổng của chúng chia hết cho 5.
h) Chứng minh rằng không có số tự nhiên nào mà chia cho 15 dư 6 còn chia 9 thì dư 1.
nhìn cái tên của m đã thấy ức chế r, thằng sỉ nhục tổ quốc!!!
1.Chứng tỏ rằng:
a)Trong hai số tự nhiên liên tiếp ,có một số chia hết cho 2
b)Trong hai số tự nhiên liên tiếp ,có một số chia hết cho 3
2.Chứng tỏ rằng:
a)Tổng của 3 số tự nhiên liên tiếp là một số chia hết cho 3
b)Tổng của 4 số tự nhiên liên tiếp là một số không chia hết cho 4
3.Chứng tỏ rằng số có dạng aaaaaa bao giờ cũng chia hết cho 7
4.Chứng tỏ rằng số có dạng abcabc bao giờ cũng chia hết cho 11
5. Chứng tỏ rằng nếu hai số có cùng số dư khi chia co 7 thì hiệu của chúng chia hết
Giúp mình nha mình đang gấp lắm!!!
Câu 5 là chỗ cuối cùng là chia hết cho 7 nha .mình quên ghi
a) Chứng tỏ rằng tổng của ba số tự nhiên liên tiếp chia hết cho 3
b) Chứng minh rằng: Hai số lẻ liên tiếp bao giờ cũng nguyên tố bằng nhau
a) Goi :3 số tự nhiên liên tiếp la : n, n+1, n+2
=> tổng : n+n+1+n+2 = 3n+3 = 3(n+1) chia hết cho 3 Vậy : tổng của ba số tự nhiên liên tiếp chia hết cho 3
b) Goi 2 so le lien tiep co dang 2k+1 va 2k+3
Gọi D là ước số chung của chúng.
Ta có 2n + 1 chia hết cho D và 3n + 3 chia hết cho D
Nên 2n + 3 - ( 2n+1) chia hết D hay 2 chia hết cho D
Nhưng D ko thể = 2 vì D là ước chung của 2 số lẻ
.Vậy D = 1 tức là 2 số lẻ liên tiếp bao giờ cũng nguyên tố cùng nhau!
chúc bạn học tập tốt !!!
Chứng tỏ rằng :
a) Trong hai số tự nhiên liên tiếp có một số chia hết cho 2
b) Trong ba số tự nhiên liên tiếp có một số chia hết cho 3
c) Tổng của bốn số tự nhiên liên tiếp là một số không chia hết cho 4
d) Tổng của ba số tự nhiên lien tiếp là một số chia hết cho ba
a; hai số tự nhiên liên tiếp có dạng: n; n + 1
Nếu n \(⋮\) 2 vậy trong hai số tự nhiên liên tiếp có một số chia hết cho 2
Nếu n = 2k + 1 thì n + 1 = 2k + 1 + 1 = 2k + (1 + 1) = 2k + 2 ⋮ 2
Từ những lập luận trên ta có hai số tự nhiên liên tiếp luôn có một số chia hết cho hai
b; Ba số tự nhiên liên tiếp có dạng: n; n + 1; n + 2
Nếu n ⋮ 3 thì trong ba số tự nhiên liên tiếp luôn có một số chia hết cho 3
Nếu n : 3 dư 1 hoặc 2 thì n có dạng: m = 3k + 1 hoặc n = 3k + 2
Trường hợp n = 3k + 1
khi đó n + 2 = 3k + 1 + 2 = 3k + (1 + 2) = 3k + 3 ⋮ 3
Trường hợp n = 3k + 2 thì n + 1 = 3k + 1 + 2 = 3k + (2 + 1) = 3k + 3
Từ những lập luận trên ta có:
Trong ba số tự nhiên liên tiếp luôn có một số chia hết cho 3
c; Bốn số tự nhiên liên tiếp có dạng:
n; n + 1; n + 2; n + 3
Khi đó tổng của bốn số tự nhiên liên tiếp là:
n + n + 1 + n + 2 + n + 3
= (n + n + n + n) + (1+ 2 + 3)
= 4n + (3+ 3)
= 4n + 6
= 4(n + 1) + 2 mà 2 không chia hết cho 4
Vậy tổng của bốn số tự nhiên liên tiếp không chia hết cho 4
a) Tổng của ba số tự nhiên liên tiếp có chia hết cho 3 không ?
b) Tổng của bốn số tự nhiên liên tiếp có chia hết cho 4 không ?
c) Chứng tỏ rằng trong ba số tự nhiên liên tiếp có một số chia hết cho 3
d) Chứng tỏ rằng trong bốn số tự nhiên liên tiếp có một số chia hết cho 4
A, CÓ
B,KHÔNG
C,GOI BA SO TU NHIEN LIEN TIEP LA A,A+1, A+2,
(a+a+a)+ (1+2)
3a+3 chia hết cho 3
vi 3chia hết cho 3
vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
gọi 4 số tự nhiên liên tiếp là a,á+1,a+2,a+3
(a+a+a+a)+(1+2+3)
4a+6 không chia hết cho 3 vì 4 không chia hết cho 3
vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 3
nếu câu a và câu b có vì sao thì sẽ làm thế nào
Đáp án của mik là:..............
Nhớ k cho mik nha!