Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phuc hoang
Xem chi tiết
tth_new
2 tháng 11 2018 lúc 19:33

Gọi ba phần đó lần lượt là x,y,z.Theo đề bài,ta có: 

x + y + z = 520. Mà 3 số x,y,z lần lượt tỉ lệ nghịch với 2,3,4 hay \(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}\)

Áp dụng tính chất dãy tỉ số bằng nhau,ta có: \(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}=\frac{x+y+z}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}}=\frac{520}{\frac{13}{12}}=480\)

Do:

\(\frac{x}{\frac{1}{2}}=480\Rightarrow x=240\)

\(\frac{y}{\frac{1}{3}}=480\Rightarrow y=160\)

\(\frac{z}{\frac{1}{4}}=480\Rightarrow z=120\)

Nguyễn Thanh Thư
2 tháng 11 2018 lúc 19:34

Theo đề bài và theo tính chất tỉ lệ nghịch ta có: 
Gọi 3 phần phải chia là x,y.,z thì : 
2x=3y=4z (lưu ý cách làm vì bội chung nhỏ nhất của 2,3 và 4 là 12 nên ta chia đẳng thức cho 12) 
2x/12=3y/12=4z/12 Hay là: 
x/6=y/4=z/3=(x+y+z)/((6+4+3)=520/13=40 
Suy ra; 
x=6.40=120 
y=4.40=160 
z=6.40=240

Hoàng Văn Long
18 tháng 2 2020 lúc 9:09

Đáp án:

1.

Gọi 3 phần 520 chia thành là a, b, c

3 phần tỉ lệ nghịch với 2,3,4

=> a12=b13=c14a12=b13=c14 

Áp dụng tính chất dãy tỉ số bằng nhau, ta có :

a12=b13=c14=a+b+c12+13+14=5201312=480a12=b13=c14=a+b+c12+13+14=5201312=480 

=> a = 480.1212 = 240 

b = 480.1313 = 160

c = 480.1414 = 120

Khách vãng lai đã xóa
_Phạm Thị Phương thảo_
Xem chi tiết
Đức Phạm
28 tháng 7 2017 lúc 20:55

Đặt ba phần tỉ lệ nghịch đó là : x ; y ; z. Ta có: 

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và \(x+y+z=520\)

Áp dụng tính chất dãy tỉ số bằng nhau . ta có : 

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{520}{9}\)

\(\frac{x}{2}=\frac{520}{9}\Rightarrow x=\frac{520}{9}.2=\frac{1040}{9}\)

\(\frac{y}{3}=\frac{520}{9}\Rightarrow y=\frac{520}{9}.3=\frac{520}{3}\)

\(\frac{z}{4}=\frac{520}{9}\Rightarrow z=\frac{520}{9}.4=\frac{2080}{9}\)

Vậy ...

Trần Phúc
29 tháng 7 2017 lúc 10:03

Gọi ba phần cần chia là x;y;z.

Vì x;y;z tỉ lệ nghịch với 2,3,4 ta có:

\(x.2=y.3=z.4\)và \(x+y+z=520\)

\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{4}=\frac{z}{3}\Leftrightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)và \(x+y+z=520\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{6+4+3}=\frac{520}{13}=40\)

\(\hept{\begin{cases}\frac{x}{6}=40\Rightarrow x=40.6=240\\\frac{y}{4}=40\Rightarrow y=40.4=160\\\frac{z}{3}=40\Rightarrow z=40.3=120\end{cases}}\)

Vậy ba phần cần chia lần lượt là 240,160,120.

Châu Minh Trọng
Xem chi tiết
Nguyệt Băng Vãn
11 tháng 11 2017 lúc 18:47

gọi x, y, z là ba phần của số 520

Theo đề bài, ta có:

x+y+z=520; \(\frac{X}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}\)

Giải theo kiểu tỉ lệ nghịch là nó ra.

Vo Trong Duy
Xem chi tiết
pektri5
15 tháng 11 2017 lúc 18:45

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

Thu Hường Phạm
5 tháng 12 2017 lúc 19:32

goi 3 phần đó là x;y;z

ta có : 2x=3y=4z và x+y+z =520 suy ra 2x/12=3y/12=4z/12 và x+y+z=520 suy ra x/6=y/4=z/3 và x+y+z=520

áp dụng ......

x/6=y/4=z/3=x+y+z/6+4+3=520/13=40

suy ra x=40 . 6=240

       y=40.4=160

      z=40.3=120

vậy ......

Tô Tử Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 12 2021 lúc 0:21

Bài 6:

a: k=27

b: y=27/x

Hoàng Nhật Anh
Xem chi tiết
Trần Hà	Vy
8 tháng 12 2021 lúc 21:36

Bài giải undefined

Khách vãng lai đã xóa
IU
Xem chi tiết
Nguyễn Thái Thịnh
1 tháng 3 2020 lúc 19:28

a, Gọi 3 phần đó là \(x,y,z\)

Ta có: \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{6}}\)và \(x+y+z=315\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{6}}=\frac{x+y+z}{\frac{1}{3}+\frac{1}{5}+\frac{1}{6}}=\frac{315}{0,7}=450\)

\(\frac{x}{\frac{1}{3}}=450\Leftrightarrow x=150\)

\(\frac{y}{\frac{1}{5}}=450\Leftrightarrow y=90\)

\(\frac{z}{\frac{1}{6}}=450\Leftrightarrow z=75\)

Vậy 3 phần đó là \(150;90;75\)

Mình làm hơi tắt, bạn thông cảm nhé!

Khách vãng lai đã xóa
Trương Anh Quân
Xem chi tiết
Yen Nhi
2 tháng 1 2022 lúc 19:44

Answer:

Câu 1:

Gọi ba phần được chia từ số 470 lần lượt là x, y, z 

Có: Ba phần tỉ lệ nghịch với 3, 4, 5

\(\Rightarrow x3=y4=z5\Rightarrow\frac{x}{20}=\frac{y}{15}=\frac{z}{12}\) và \(x+y+z=470\)

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{20}=\frac{y}{15}=\frac{z}{12}=\frac{x+y+z}{20+15+12}=\frac{470}{47}=10\)

\(\Rightarrow\hept{\begin{cases}x=200\\y=150\\z=120\end{cases}}\)

Câu 2: 

Gọi ba phần được chia từ số 555 lần lượt là x, y, z

\(\Rightarrow\hept{\begin{cases}x+y+z=55\\4x=5y=6z\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y+z=55\\\frac{x}{15}=\frac{y}{12}=\frac{z}{10}=\frac{x}{15+12+10}=\frac{555}{35}=\frac{111}{7}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{1665}{7}\\y=\frac{1332}{7}\\z=\frac{1110}{7}\end{cases}}\)

Câu 3:

Gọi ba phần được chia từ số 314 lần lượt là x, y, z

\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{2}{3}x=\frac{2}{5}y=\frac{3}{7}z\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{2x}{3}=\frac{2y}{5}=\frac{3z}{7}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{x}{9}=\frac{y}{15}=\frac{z}{14}=\frac{x+y+z}{9+15+14}=\frac{314}{38}=\frac{157}{19}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{1413}{19}\\y=\frac{2355}{19}\\z=\frac{2198}{19}\end{cases}}\)

Khách vãng lai đã xóa
Nguyễn Hà Phương
Xem chi tiết
Giang
29 tháng 11 2017 lúc 5:13

Giải:

Gọi ba số được chia lần lượt là a, b và c

Theo đề ra, ta có:

\(a+b+c=230\)

\(\left\{{}\begin{matrix}a.\dfrac{1}{3}=b.\dfrac{1}{2}\\a.\dfrac{1}{5}=c.\dfrac{1}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{3}=\dfrac{b}{2}\\\dfrac{a}{5}=\dfrac{c}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{15}=\dfrac{b}{10}\\\dfrac{a}{15}=\dfrac{c}{21}\end{matrix}\right.\Leftrightarrow\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}=\dfrac{a+b+c}{15+10+21}=\dfrac{230}{46}=5\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=15.5\\b=10.5\\c=21.5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=75\\b=50\\c=105\end{matrix}\right.\)

Vậy ...