cho tam giác ABC(góc A =90 độ) có AB = 5cm, AC 12cm. Xác định tâm bán kính đường tròn ngoại tiếp tam giác ABC
giải giúp mk với ạ
Áp dụng Pitago: \(BC=\sqrt{AB^2+AC^2}=13\)
Do tam giác ABC vuông tại A \(\Rightarrow BC\) là đường kính
\(\Rightarrow R=\dfrac{1}{2}BC=\dfrac{13}{2}=6,5\left(cm\right)\)
Cho tam giác ABC vuông tại A, có AB = 18cm, AC = 24cm. Bán kính đường tròn ngoại tiếp tam giác đó bằng:
Bán kính đường tròn ngoại tiếp tam giác = 15cm
Cho tam giác ABC vuông tại A. Vẽ đường tròn ngoại tiếp bán kính R và nội tiếp bán kính r của tam giác đó. Biết R = 5cm; r = 2cm. Tính AB + AC.
Tam giác ABC vuông tại A => R=\(\frac{BC}{2}\) => BC=10
Ta có: r =\(\frac{2S}{AB+BC+AC}\) => \(\frac{AB.AC}{AB+AC+10}\) =2
AB2+AC2=100 (Pytago)
Giải pt ra, ta được: (AB;AC)=(6;8)
=> AB+AC=14
Cho tam giác ABC vuông ở A có AB = 5 cm, AC = 12 cm. Tính bán kính đường tròn ngoại tiếp tam giác ABC
Áp dụng định lí Pytago cho tam giác vuông ABC, ta có BC=13cm => R=6,5cm
Cho tam giác ABC, biết góc góc A bằng 600, AC = 8cm, AB = 5cm. Tính bán kính R đường tròn ngoại tiếp tam giác ABC.
A. 4,4
B. 4,04
C. 3,84
D. 5,02
Cho tam giác ABC có AB=9cm, AC=12cm, BC=15cm. Tính diện tích tam giác và bán kính đường tròn ngoại tiếp tam giác?
Cho ΔABC có AB=5cm; AC=12cm. Tính bán kính đường tròn ngoại tiếp của tam giác đó.
Giúp e vs nak....^^
cho tam giác ABC vuông tạ A có AB = 6cm, ac = 8cm. Tính bán kính đường tròn ngoại tiếp R và bán kính đường tròn nội tiếp tam giác
trong tgiac vuông tâm đường tròn ngoại tiếp chính là trung điểm cạnh huyền
Áp dụng định lý pytago vào tgiac vuông ABC ta có :
\(BC^2\)=\(AC^2\)+\(AB^2\)
\(BC^2\)=\(8^2\)+\(6^2\)
\(BC^2\)=100
BC=10
Vậy bán kính đường tròn ngoại tiếp tgiac ABC là:
10:2=5cm
cho tam giác ABC vuông tạ A có AB = 6cm, ac = 8cm. Tính bán kính đường tròn ngoại tiếp R và bán kính đường tròn nội tiếp tam giác
Gọi bk ngoại tiếp là R còn nôi tiếp là r ;p là 1/2 chu vi (= a+b+c/2)
ra có R=BC/2=5
mà S=pr=(6+8+10)/2r=6*8/2=>r=2