Tính tổng B(D1-D2)>6150 với:
D1=1+21+41+...+701 và D2=2+5+8+...+44
cho hai đường thẳng (d1) y=(2+m)x+1 và (d2) y=(1+2m)x+2
1)tìm m để (d1) và (d2) cắt nhau
2)với m=-1 vẽ d1 và d2 trên cùng mặt phẳng tọa độ Oxy rôi tìm tọa độ giao điểm của 2 đường thẳng d1 và d2 bằng phép tính
Ai giúp mình với ạ
thank nhiều
1: Để hai đường thẳng cắt nhau thì
2m+1<>m+2
hay m<>1
Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng d 1 : x - 4 3 = y - 1 - 1 = z + 5 - 2 và d 2 : x - 2 1 = y + 3 3 = z 1 . Giả sử A ∈ d 1 , B ∈ d 2 sao cho AB là đoạn vuông góc chung của d1 và d2. Vectơ A B ⇀ là:
A. A B ⇀ = ( 5 ; - 5 ; 10 )
B. A B ⇀ = ( 2 ; - 2 ; 4 )
C. A B ⇀ = ( 3 ; - 3 ; 6 )
D. A B ⇀ = ( 1 ; - 1 ; 2 )
Trong hệ tọa độ Oxyz, cho hai đường thẳng chéo nhau d 1 : x − 2 2 = y + 2 1 = z − 6 − 2 v à d 2 : x − 4 1 = y + 2 − 2 = z + 1 3 . Phương trình mặt phẳng (P) chứa d 1 và song song với d 2 là:
A. P : x + 8 y + 5 z + 16 = 0
B. P : x + 8 y + 5 z − 16 = 0
C. P : 2 x + y − 6 = 0
D. P : x + 4 y + 3 z − 12 = 0
Cho đường thẳng (d1): y=-x-1; (d2): y= x-5.
a) Tìm tọa độ giao điểm A của (d1) và (d2)
b) c/m(d1) vuông góc với (d2), Tính chu vi tam giác tạo bởi (d1), (d2) và trục Oy
a: Tọa độ A là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}-x-1=x-5\\y=x-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2x=-4\\y=x-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2\\y=2-5=-3\end{matrix}\right.\)
=>A(2;-3)
b: Vì \(a_1\cdot a_2=1\cdot\left(-1\right)=-1\)
nên (d1) vuông góc với (d2)
Gọi B,C lần lượt là giao điểm của (d1) với trục Oy, (d2) với trục Oy
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=-x-1=-0-1=-1\end{matrix}\right.\)
=>B(0;-1)
Tọa độ C là:
\(\left\{{}\begin{matrix}x=0\\y=x-5=-5\end{matrix}\right.\)
=>C(0;-5)
B(0;-1); C(0;-5); A(2;-3)
\(BC=\sqrt{\left(-5+1\right)^2+\left(0-0\right)^2}=4\)
\(BA=\sqrt{\left(2-0\right)^2+\left(-3+1\right)^2}=2\sqrt{2}\)
\(AC=\sqrt{\left(2-0\right)^2+\left(-3+5\right)^2}=2\sqrt{2}\)
Chu vi tam giác ABC là:
\(4+2\sqrt{2}+2\sqrt{2}=4\sqrt{2}+4\)
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;-1;3) và hai đường thẳng, d 1 : x - 4 1 = y + 2 4 = z - 1 - 2 , d 2 = x - 2 1 = y + 1 - 1 = z - 1 1 . Viết phương trình đường thẳng d đi qua A, vuông góc với đường thẳng d 1 và cắt đường thẳng d 2 .
A. d : x - 4 4 = y + 1 1 = z - 3 4
B. d : x - 1 2 = y + 1 1 = z - 3 3
C. d : x - 1 2 = y + 1 - 1 = z - 3 - 1
D. d : x - 1 - 2 = y + 1 2 = z - 3 3
Đáp án C
Gọi B 2 + t ; - 1 - t ; 1 + t A B ¯ = 1 + t ; - t ; t - 2 . Cho A B ¯ . u d ¯ = 0 ⇔ t + 1 - 4 t - 2 t + 4 = 0 ⇔ t = 1 ⇒ A B ¯ = 2 ; - 1 ; - 1
Khi đó d : x - 1 2 = y + 1 - 1 = z - 3 - 1 .
cho (d1):y = `1/5` x +1, (d2):y=ax+b (a khác 0)
Biết (d2) // với (d3):y=`-2/5` x-11 và cắt (d1) ở điểm A có hoành độ bằng `-5`. (d1) và (d2) lần lượt cắt trục Oy ở điểm B và C. Tính diện tích tam giác ABC
Thay x=-5 vào (d1), ta được:
\(y=\dfrac{1}{5}\cdot\left(-5\right)+1=-1+1=0\)
Vì (d2)//(d3) nên \(\left\{{}\begin{matrix}a=-\dfrac{2}{5}\\b\ne-11\end{matrix}\right.\)
Vậy: (d2): \(y=-\dfrac{2}{5}x+b\)
Thay x=-5 và y=0 vào (d2), ta được:
\(b-\dfrac{2}{5}\cdot\left(-5\right)=0\)
=>b+2=0
=>b=-2
Vậy: (d2): \(y=-\dfrac{2}{5}x-2\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{5}\cdot0+1=1\end{matrix}\right.\)
Tọa độ C là:
\(\left\{{}\begin{matrix}x=0\\y=-\dfrac{2}{5}\cdot0-2=-2\end{matrix}\right.\)
Vậy: A(-5;0); B(0;1); C(0;-2)
\(AB=\sqrt{\left(0+5\right)^2+\left(1-0\right)^2}=\sqrt{26}\)
\(AC=\sqrt{\left(0+5\right)^2+\left(-2-0\right)^2}=\sqrt{29}\)
\(BC=\sqrt{\left(0-0\right)^2+\left(-2-1\right)^2}=3\)
Xét ΔABC có \(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{26+29-9}{2\cdot\sqrt{26}\cdot\sqrt{29}}=\dfrac{23}{\sqrt{754}}\)
=>\(sinBAC=\sqrt{1-\left(\dfrac{23}{\sqrt{754}}\right)^2}=\dfrac{15}{\sqrt{754}}\)
Diện tích tam giác ABC là:
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinBAC\)
\(=\dfrac{1}{2}\cdot\dfrac{15}{\sqrt{754}}\cdot\sqrt{26\cdot29}=7,5\)
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng chéo nhau d 1 : x - 2 2 = y + 2 1 = z - 6 - 2 và d 2 : x - 4 1 = y + 2 - 2 = z + 1 3 . Phương trình mặt phẳng (P) chứa đường thẳng d1 và song song với đường thẳng d2 là
A. (P): 2x + y - 6 = 0.
B. (P): x + 8y + 5z + 16 = 0.
C. (P): x + 4y + 3z - 12 = 0.
D. (P): x + 8y + 5z - 16 = 0.
Cho (d1): y=2x và (d2):y= -1/2x + 5 1/ vẽ d1 và d2 trên cùng mặt phẳng tọa độ 2/ xác định tọa độ giao điểm A của d1 và d2 3/ gọi giao điểm của d2 với Ox là B. Tính các góc của tam giác AOB 4/ tính chu vi và diện tích của tam giác AOB
1) \(\left\{{}\begin{matrix}\left(d_1\right):y=2x\\\left(d_2\right):y=-\dfrac{1}{2}x+5\end{matrix}\right.\)
2) Theo đồ thi ta có :
\(\left(d_1\right)\cap\left(d_2\right)=A\left(2;4\right)\)
3) \(\left(d_2\right)\cap Ox=B\left(a;0\right)\)
\(\Leftrightarrow-\dfrac{1}{2}a+5=0\)
\(\Leftrightarrow\dfrac{1}{2}a=5\)
\(\Leftrightarrow a=10\)
\(\Rightarrow\left(d_2\right)\cap Ox=B\left(10;0\right)\)
4) \(OA=\sqrt[]{\left(2-0\right)^2+\left(4-0\right)^2}=\sqrt[]{20}=2\sqrt[]{5}\)
\(OB=\sqrt[]{\left(10-0\right)^2+\left(0-0\right)^2}=\sqrt[]{10^2}=10\)
\(AB=\sqrt[]{\left(10-2\right)^2+\left(0-4\right)^2}=\sqrt[]{80}=4\sqrt[]{5}\)
Ta thấy :
\(OA^2+AB^2=20+80=OB^2=100\)
\(\Rightarrow\Delta OAB\) vuông tại A
\(\Rightarrow\widehat{OAB}=90^o\)
\(sin\widehat{AOB}=\dfrac{AB}{OB}=\dfrac{4\sqrt[]{5}}{10}=\dfrac{2\sqrt[]{5}}{5}\)
\(\Rightarrow\widehat{AOB}\sim63,43^o\)
\(\Rightarrow\widehat{OBA}=90^o-63,43^o=26,57^o\)
5) Chu vi \(\Delta OAB\) :
\(AB+OA+OB=4\sqrt[]{5}+2\sqrt[]{5}+10=10\sqrt[]{5}+10=10\left(\sqrt[]{5}+1\right)\left(đvmd\right)\)
Diện tích \(\Delta OAB\) :
\(\dfrac{1}{2}AB.OA=\dfrac{1}{2}.4\sqrt[]{5}.2\sqrt[]{5}=20\left(đvdt\right)\)
Cho đường thẳng d 1 : y = − x + 2 và đường thẳng d 2 : y = 5 − 4 x . Gọi A, B lần lượt là giao điểm của d 1 với d 2 và d 1 với trục hoành. Tổng hoành độ giao điểm của A và B là:
A. 2
B. 5
C. 3
D. 8
+) Phương trình hoành độ giao điểm của d 1 v à d 2 là:
− x + 2 = 5 – 4 x ⇔ 3 x = 3 ⇒ x = 1 n ê n x A = 1
+) B ( x B ; 0 ) là giao điểm của đường thẳng d1 và trục hoành. Khi đó ta có:
= − x B + 2 ⇒ x B = 2
Suy ra tổng hoành độ x A + x B = 1 + 2 = 3
Đáp án cần chọn là: C