tìm x,y,z biết : x/12 = y/9 = z/5 và xyz = 20
Tìm x ,y, z biết
xyz = 20 và x/12 = y/9 = z/5
Ta có: \(\left[\begin{array}{nghiempt}xyz=20\\\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}xyz=20\\x=12k\\y=9k\\z=5k\end{array}\right.\)
\(\Rightarrow xyz=12k.9k.5k=540k^3\)
\(\Rightarrow20=540k^3\)
\(\Rightarrow k^3=\frac{20}{540}=\frac{1}{27}\Rightarrow k^3=\left(\frac{1}{3}\right)^3\Rightarrow k=\frac{1}{3}\)
\(\Rightarrow x=12k=12.\frac{1}{3}=4\)
\(\Rightarrow y=9k=9.\frac{1}{3}=3\)
\(\Rightarrow z=5k=\frac{5.1}{3}=\frac{5}{3}\)
TA CÓ X/12=Y/9=Z/5 =>X=12K;Y=9K;Z=5K
MÀ XYZ=20=>12K.9K.5K=20 HAY 540\(K^3\)=20
=>\(K^3\)=20/540=1/27=>\(K^3\)=\(\left(\frac{1}{3}\right)^3\)=>K=1/3
TỪ X/12=1/3=>X=4
Y/9=1/3=>Y=3
Z/5=1/3=>Z=5/3
VẬY X=4;Y=3;Z=5/3
TICK ĐÚNG CHO MIK NHA
Tìm x, y, z. Biết rằng: x: y : z = 12 : 9 : 5 và xyz = 20
Vì x: y : z = 12 : 9 : 5 nên \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\)
Đặt \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)
\(\Rightarrow\hept{\begin{cases}x=12k\\y=9k\\z=5k\end{cases}}\)
Thay vào ta có :
\(12k.9k.5k=20\)
\(540.k^3=20\)
\(k^3=\frac{1}{27}\)
\(k^3=\left(\frac{1}{3}\right)^3\)
\(k=\frac{1}{3}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{12}=\frac{1}{3}\\\frac{y}{9}=\frac{1}{3}\\\frac{z}{5}=\frac{1}{3}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=4\\y=3\\z=\frac{5}{3}\end{cases}}\)
Tìm x,y,z biết x/12=y/9=z/5; xyz=20
x/12=y/9=z/5 = k => x = 12k ; y = 9k ; z = 5k
Thay vào ta được:
12k.9k.5k = 20
540k3 = 20
k3 = 1/27
Vậy k = 1/3
x = 1/3 . 12 = 4
y = 9.1/3 = 3
z = 1/3 . 5 = 5/3
Tìm x,y,z biết \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\)và xyz = 20, xy = 112
Tìm x, y, z biết:
\(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\) và xyz =20
Đặt x/12 = y/9 = z/5 = k ta có:
x = 12k
y = 9k
z = 5k
=> x.y.z = 12k.9k.5k
=> k^3.540=20
=> k^3 = 1/27
=> k^3= (1/3)^3
=> k = 1/3
x/12=1/3 => x=4
y/9= 1/3 => y=3
z/5=1/3 =. z=5/3
Gọi \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)
\(\Rightarrow x=12k;y=9k;z=5k\)
\(\Rightarrow xyz=12k.9k.5k=540k^3=20\)
\(\Rightarrow k^3=\frac{20}{540}=\frac{1}{27}=\left(\frac{1}{3}\right)^3\)
\(\Rightarrow k=\frac{1}{3}\)
\(\Rightarrow\frac{x}{12}=\frac{1}{3}\Rightarrow x=\frac{1}{3}.12=4\)
\(\frac{y}{9}=\frac{1}{3}\Rightarrow y=\frac{1}{3}.9=3\)
\(\frac{z}{5}=\frac{1}{3}\Rightarrow z=\frac{1}{3}.5=\frac{5}{3}\)
Vậy \(x=4;y=3;z=\frac{5}{3}\)
Tìm x, y, z biết:\(\frac{15}{x-9}=\frac{20}{y-12}=\frac{40}{z-21}\)và xyz = 1200
x:y:z=12:9:5 và xyz=20
tìm x,y,z
x:y:z=12:9:5 ->\(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\)
Đặt \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\)= k -> x = 12*k ;y = 9*k ;z = 5*k (1)
thay (1) vào xyz=20 ta được : 12k + 9k
x/2=y/9=z/5 và xyz=20. tìm x; y; z
uk lạ lắm thầy giáo giang r mà hỉu dc nhiu đó thâu
khó là chỗ k3 ó bạn
Tìm các số x, y, z, biết rằng: x : y : z = 12 : 9 : 5 và xyz = 20
Ta có : \(x:y:z=12:9:5\Rightarrow\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\)
Ta có : \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)
⇒ \(x=12k\)
\(y=9k\)
\(z=5k\)
Mà \(x.y.z=20\)
\(\Rightarrow12k.9k.5k=20\)
\(k^3.540=20\)
\(k^3=20:540\)
\(k^3=\frac{1}{27}\)
\(k^3=\left(\frac{1}{3}\right)^3\)
\(k=\frac{1}{3}\)
⇒ \(\frac{x}{12}=\frac{1}{3}\Rightarrow x=12.\frac{1}{3}=4\)
\(\frac{y}{9}=\frac{1}{3}\Rightarrow y=9.\frac{1}{3}=3\)
\(\frac{z}{5}=\frac{1}{3}\Rightarrow z=5.\frac{1}{3}=\frac{5}{3}\)
Vậy \(x=4;y=3;z=\frac{5}{3}\)
Ta có: \(x:y:z=12:9:5.\)
=> \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\) và \(x.y.z=20\)
Đặt \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=12k\\y=9k\\z=5k\end{matrix}\right.\)
Có: \(x.y.z=20\)
=> \(12k.9k.5k=20\)
=> \(540k^3=20\)
=> \(k^3=20:540\)
=> \(k^3=\frac{1}{27}\)
=> \(k=\frac{1}{3}.\)
+) Với \(k=\frac{1}{3}.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{3}.12=4\\y=\frac{1}{3}.9=3\\z=\frac{1}{3}.5=\frac{5}{3}\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(4;3;\frac{5}{3}\right).\)
Chúc bạn học tốt!