Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trọng Hoàng Nghĩa
Xem chi tiết
Đoàn Văn Tuyền
6 tháng 5 2017 lúc 21:42

gọi biểu thức là A

A=1/2+1/4+1/8+...+1/2048=1/2+1/2^2+1/2^3+...+1/2^10

=>2A=1+1/2+1/2^2+...+1/2^9

=>A=2A-A(bạn đặt cột dọc ra rồi sẽ thấy:1/2-1/2=0;1/2^2-1/2^2=0;...)Ta được kết quả bằng 1+1/2^10

uzumaki naruto
7 tháng 5 2017 lúc 7:33

Đặt A =1/2 + 1/4 + 1/8 + ...+ 1/1024 + 1/2048

A= 1/2 + 1/2^2 + 1/2^3+...+ 1/2^10 + 1/2^11

2A= 1 +1/2 + 1/2^2 +...+ 1/2^9 + 1/2^10

2A-A= (1 +1/2 + 1/2^2 +...+ 1/2^9 + 1/2^10) - (1/2 + 1/2^2 + 1/2^3+...+ 1/2^10 + 1/2^11)

A= 1+1/2 + 1/2^2 +...+ 1/2^9 + 1/2^10 - 1/2 - 1/2^2 - 1/2^3 - ...- 1/2^10 - 1/2^11

A= 1- 1/2^11

A= 2047/ 2048

Đỗ Vũ Bá Linh
26 tháng 5 2021 lúc 12:31

Đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+...+\frac{1}{1024}+\frac{1}{2048}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+...+\frac{1}{512}+\frac{1}{1024}\)
\(2A-A=1-\frac{1}{2048}\)
\(A=\frac{2047}{2048}\)

Khách vãng lai đã xóa
nguyễn thị ngọc linh
Xem chi tiết
Thái Sơn Phạm
23 tháng 8 2017 lúc 21:23

\(=\frac{-\frac{1}{9}+1-\frac{2}{10}+1-\frac{3}{11}+1-...-\frac{92}{100}+1}{\frac{1}{9}+\frac{1}{10}+...+\frac{1}{100}}\)

\(=\frac{\frac{8}{9}+\frac{8}{10}+\frac{8}{11}+...+\frac{8}{100}}{\frac{1}{9}+\frac{1}{10}+...+\frac{1}{100}}\)

\(=\frac{8\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)}{\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}}\)

= 8

Ma Kết _ Capricorn
Xem chi tiết
do thi bach hop
13 tháng 2 2017 lúc 12:19

mình không biết nữa bằng bao nhiêu ấy nhỉ .......? .......? Sory ^.^

Đào Minh Tiến
13 tháng 2 2017 lúc 12:20

1/3 + 13/15 + 33/35 + 61/63 + 97/99

= 45/11 ( mình không tiện giải, để khi khác giải sau)

Chúc bạn may mắn!

Cure Beauty
13 tháng 2 2017 lúc 12:21

= 45/11

mik làm biếng ghi lâu lắm bạn ạ !!!

k mik nhaaaaaaaaaaaaaaaaaaaaaa

TXT Channel Funfun
Xem chi tiết
Đảo Rồng
29 tháng 7 2017 lúc 9:56

Cái này phải là cộng nhé bn, mk lm r

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

36A bất bại
29 tháng 7 2017 lúc 9:56

\(=\frac{99}{100}\)

phạm uyên nhi
29 tháng 7 2017 lúc 10:03

\(\frac{99}{100}\)

Nguyễn Thu Phương
Xem chi tiết
tth_new
11 tháng 3 2018 lúc 10:04

\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)

\(\Leftrightarrow S=1\left(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\right)\)

\(\Leftrightarrow S-S=1+\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)

\(\Leftrightarrow S=1-\frac{1}{60}=\frac{59}{60}\)

Lưu Cao Hoàng
Xem chi tiết
Lưu Cao Hoàng
Xem chi tiết
N
5 tháng 5 2016 lúc 10:53

A= 1+ 1/2 + 1/22 + ... + 1/22012 

﴾1/2﴿A= 1/2+1/22+...+1/22013

A‐﴾1/2﴿A= ﴾1+ 1/2 + 1/22 + ... + 1/22012 ﴿ ‐ ﴾ 1/2+1/22+...+1/22013 ﴿

﴾1/2﴿A = 1 ‐ 1/22013 

A= ﴾1‐ 1/22013 ﴿ : 1/2

A= 2 ‐ 1/22012

123654
5 tháng 5 2016 lúc 10:51

\(A=2-\frac{1}{2^{2012}}\)

ST
5 tháng 5 2016 lúc 10:53

A= 1+ 1/2 + 1/22 + ... + 1/22012 

﴾1/2﴿A= 1/2+1/22+...+1/22013

A‐﴾1/2﴿A= ﴾1+ 1/2 + 1/22 + ... + 1/22012 ﴿ ‐ ﴾ 1/2+1/22+...+1/22013 ﴿

﴾1/2﴿A = 1 ‐ 1/22013 

A= ﴾1‐ 1/22013 ﴿ : 1/2

A= 2 ‐ 1/22012

_Psycho_
Xem chi tiết
Nguyễn Nhật Minh
Xem chi tiết
soyeon_Tiểu bàng giải
5 tháng 8 2016 lúc 21:43

ớ chết, mk nhầm, lm lại nha

\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)

\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)

\(S< \frac{1}{30}.10+\frac{1}{40}.10+\frac{1}{50}.10\)

\(S< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}< \frac{4}{5}\)

=> \(S< \frac{4}{5}\)

soyeon_Tiểu bàng giải
5 tháng 8 2016 lúc 21:37

\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)

\(S< 30.\frac{1}{60}\)

\(S< \frac{1}{2}< \frac{4}{5}\)

\(S< \frac{4}{5}\)

Edogawa Conan
6 tháng 8 2016 lúc 7:37

\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)

\(=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)

\(\Rightarrow S< \frac{1}{30}.10+\frac{1}{40}.10+\frac{1}{50}.10\)

\(S< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}< \frac{4}{5}\)

\(V\text{ậy}:S< \frac{4}{5}\)