So sánh 5^10+12^10 và 13^10
so sánh 4/7 và 11/15; 11/9 và 13/10; 10/11 và 11/12; 17/5 và 19/7
số A = 9/10+10/11+11/12+12/13+18/13.So sánh A với 5
Cho số tự nhiên a khác 0 .So sánh A và B biết: A=11/a^13+9/a^12 và B=10/a^13+10/a^12
So sánh phân số A= (10^12+6)/(10^12-11) và B =(10^11+5)/(10^11-12)
\(A=\dfrac{10^{12}+6}{10^{12}-11}\)
\(\Rightarrow A=\dfrac{10^{12}-11+17}{10^{12}-11}\)
\(\Rightarrow A=\dfrac{10^{12}-11}{10^{12}-11}+\dfrac{17}{10^{12}-11}\)
\(\Rightarrow A=1-\dfrac{17}{10^{12}-11}\)
\(B=\dfrac{10^{11}+5}{10^{11}-12}\)
\(\Rightarrow B=\dfrac{10^{11}-12+17}{10^{11}-12}\)
\(\Rightarrow B=\dfrac{10^{11}-12}{10^{11}-12}+\dfrac{17}{10^{11}-12}\)
\(\Rightarrow B=1-\dfrac{17}{10^{11}-12}\)
Vậy ta cần so sánh \(1-\dfrac{17}{10^{12}-11}\) và \(1-\dfrac{17}{10^{11}-12}\)
Ta thấy \(\left(10^{12}-11\right)>\left(10^{11}-12\right)\) và 2 phân số trên cùng tử số 17 nên \(\dfrac{17}{10^{12}-11}< \dfrac{17}{10^{11}-12}\)
Vậy \(1-\dfrac{17}{10^{12}-11}>1-\dfrac{17}{10^{11}-12}\) hay \(A>B\)
So sánh phân số 1015+6/1016+6 và 1012+1/1013+1
So sánh:(Làm theo cách nhanh gọn nhé)
a)\(\frac{13}{14}\) và \(\frac{12}{13}\)
b)A=\(\frac{10^{10}+5}{10^{10}-1}\)
và B=\(\frac{10^{10}+4}{10^{10}-2}\)
Bài giải
Ta có :
\(\frac{13}{14}=1-\frac{1}{14}\)
\(\frac{12}{13}=1-\frac{1}{13}\)
Vì \(\frac{1}{14}< \frac{1}{13}\) \(\Rightarrow\text{ }\frac{13}{14}>\frac{12}{13}\)
b, Bài giải
\(A=\frac{10^{10}+5}{10^{10}-1}=\frac{10^{10}-1+6}{10^{10}-1}=\frac{10^{10}-1}{10^{10}-1}+\frac{6}{10^{10}-1}=1+\frac{6}{10^{10}-1}\)
\(B=\frac{10^{10}+4}{10^{10}-2}=\frac{10^{10}-2+6}{10^{10}-2}=\frac{10^{10}-2}{10^{10}-2}+\frac{6}{10^{10}-2}=1+\frac{6}{10^{10}-2}\)
Vì \(\frac{6}{10^{10}-1}>\frac{6}{10^{10}-2}\) \(\Rightarrow\text{ }\frac{10^{10}+5}{10^{10}-1}>\frac{10^{10}+4}{10^{10}-2}\)
\(\Rightarrow\text{ }A>B\)
b, Bài giải
\(A=\frac{10^{10}+5}{10^{10}-1}=\frac{10^{10}-1+6}{10^{10}-1}=\frac{10^{10}-1}{10^{10}-1}+\frac{6}{10^{10}-1}=1+\frac{6}{10^{10}-1}\)
\(B=\frac{10^{10}+4}{10^{10}-2}=\frac{10^{10}-2+6}{10^{10}-2}=\frac{10^{10}-2}{10^{10}-2}+\frac{6}{10^{10}-2}=1+\frac{6}{10^{10}-2}\)
Vì \(\frac{6}{10^{10}-1}>\frac{6}{10^{10}-2}\) \(\Rightarrow\text{ }\frac{10^{10}+5}{10^{10}-1}>\frac{10^{10}+4}{10^{10}-2}\)
\(\Rightarrow\text{ }A>B\)
Câu a Bloom đúng đó ( so sánh đến phần bù )
so sánh 6.2^12 + 2^13 và 3^10
Có : 6.2^12 + 2^13 = 2^12 . (6+2) = 2^12 . 8 = 2^12 . 2^3 = 2^15 = (2^3)^5 = 8^5
3^10 = (3^2)^5 = 9^5
Vì 8^5 < 9 ^5 nên 6.2^12 + 2^13 < 3^10
Có 6 . 2^12 + 2^13 = 6 . 2^12 + 2^12 . 2 = 2^12( 6 + 2 ) = 2^12 . 8 = 2^12 . 2^3 = 2^15
Giờ ta so sánh 2^15 với 3^10
2^15 = 8^5
3^10 = 9^5
Dễ thấy 8^5 < 9^5 <=> 6.2^12 + 2^13 < 3^10
So sánh
b,1012 - 1/1013 - 2 và 1010 + 1/1011 + 1
Theo đầu bài ta có:
\(\hept{\begin{cases}A=\frac{10^{12}-1}{10^{13}-1}\Rightarrow10A=\frac{10^{13}-10}{10^{13}-1}=\frac{\left(10^{13}-1\right)-9}{10^{13}-1}=1-\frac{9}{10^{13}-1}\\B=\frac{10^{10}+1}{10^{11}+1}\Rightarrow10B=\frac{10^{11}+10}{10^{11}+1}=\frac{\left(10^{11}+1\right)+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}\end{cases}}\)
Do \(1-\frac{9}{10^{13}-1}< 1< 1+\frac{9}{10^{11}+1}\Rightarrow10A< 10B\Rightarrow A< B\)
Cho A =\(\frac{10^{11}-1}{10^{12}-1}\); B =\(\frac{10^{12}-1}{10^{13}-1}\) . So sánh A và B.
\(10A=\frac{10\left(10^{11}-1\right)}{10^{12}-1}=\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}\)
\(10B=\frac{10\left(10^{12}-1\right)}{10^{13}-1}=\frac{10^{13}-10}{10^{13}-1}=\frac{10^{13}-1-9}{10^{13}-1}=1-\frac{9}{10^{13}-1}\)
Vì \(10^{13}-1>10^{12}-1\Rightarrow\frac{9}{10^{13}-1}< \frac{9}{10^{12}-1}\Rightarrow-\frac{9}{10^{13}-1}>-\frac{9}{10^{12}-1}\)
\(\Rightarrow1-\frac{9}{10^{13}-1}>1-\frac{9}{10^{12}-1}\Rightarrow10B>10A\Rightarrow B>A\)
\(A=\frac{10^{11}-1}{10^{12}-1}\Leftrightarrow10A=\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}\)
\(B=\frac{10^{12}-1}{10^{13}-1}\Leftrightarrow10B=\frac{10^{13}-10}{10^{13}-1}=\frac{10^{13}-1-9}{10^{13}-1}=1-\frac{9}{10^{13}-1}\)
\(\text{Vì }1-\frac{9}{10^{12}-1}< 1-\frac{9}{10^{13}-1}\Rightarrow10A< 10B\)
\(\Rightarrow A< B\)
Đầu tiên,ta c/m bđt phụ: Với \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\left(m>0\right)\)
Thật vậy: \(\frac{a}{b}< 1\Leftrightarrow a< b\)
Điều cần chứng minh tương đương với: \(a\left(b+m\right)< b\left(a+m\right)\)
\(\Leftrightarrow ab+am< ab+bm\)
\(\Leftrightarrow am< bm\Leftrightarrow a< b\) (đúng)
Vậy \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\left(m>0\right)\)
\(A=\frac{10^{11}-1}{10^{12}-1}=\frac{10\left(10^{11}-1\right)}{10\left(10^{12}-1\right)}=\frac{10^{12}-10}{10^{13}-10}\)
Mà \(\frac{10^{12}-10}{10^{13}-10}< 1\) nên \(\frac{10^{12}-10}{10^{13}-10}< \frac{10^{12}-10+9}{10^{13}-10+9}=\frac{10^{12}-1}{10^{13}-1}=B\)