Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Babalova
Xem chi tiết
Babalova
31 tháng 10 2023 lúc 18:55

sossososo

:)))

Lê Song Phương
31 tháng 10 2023 lúc 19:07

Ta có \(B=5^{2024}+5^{2023}+5^{2022}\)

\(B=5^{2022}\left(5^2+5+1\right)\)

\(B=31.5^{2022}⋮31\)

Vậy \(B⋮31\) (đpcm)

Đỗ Vũ Nam
Xem chi tiết
HT.Phong (9A5)
9 tháng 8 2023 lúc 8:09

\(A=5+5^2+...+5^{30}\)

\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{29}+5^{30}\right)\)

\(A=\left(5+25\right)+5\cdot\left(5+25\right)+...+5^{28}\cdot\left(5+25\right)\)

\(A=30+5\cdot30+...+5^{28}\cdot30\)

\(A=30\cdot\left(1+5+...+5^{28}\right)\)

Vậy A chia hết cho 30

HT.Phong (9A5)
9 tháng 8 2023 lúc 8:11

\(A=5+5^2+....+5^{30}\)

\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{28}+5^{29}+5^{30}\right)\)

\(A=5\cdot\left(1+5+25\right)+5^4\cdot\left(1+5+25\right)+...+5^{28}\cdot\left(1+5+25\right)\)

\(A=5\cdot31+5^4\cdot31+...+5^{28}\cdot31\)

\(A=31\cdot\left(5+5^4+...+5^{28}\right)\)

Vậy A chia hết cho 31

HT.Phong (9A5)
9 tháng 8 2023 lúc 8:06

\(A=5+5^2+...+5^{30}\)

\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{29}+5^{30}\right)\)

\(A=5\cdot\left(1+5\right)+5^3\cdot\left(1+5\right)+...+5^{29}\cdot\left(1+5\right)\)

\(A=5\cdot6+5^3\cdot6+...+5^{29}\cdot6\)

\(A=6\cdot\left(5+5^3+...+5^{29}\right)\)

Vậy A chia hết cho 6

nguyenlengan
Xem chi tiết
Lê Hoài Duyên
9 tháng 9 2017 lúc 23:49

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

Nguyễn Hải Nam
10 tháng 12 2017 lúc 21:36

Thanks bạn

Đặng Thị Khánh Ly
13 tháng 2 2020 lúc 23:03

Giải: 

A= 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +....+ 2 mũ 2010

A= (2 + 2 mũ 2) + (2 mũ 3 + 2 mũ 4) +....+ (2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 3) + 2 mũ 3 (1 + 2) + 2 mũ 2009 (1 +2_

A= 2.3 + 2 mũ 3.3 +....+ 2 mũ 2009.3

A= 3.(2 + 2 mũ 3 +....+ 2 mũ 2009) chia hết cho 3

A= (2 + 2 mũ 2 + 2 mũ 3) + (2 mũ 4 + 2 mũ 5 + 2 mũ 6) +....+ (2 mũ 2008 + 2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 2 + 2 mũ 2) + 2 mũ 4(1+ 2 + 2 mũ 2) +...+ 2 mũ 2008.(1 + 2 + 2 mũ 2)

A= 2.7 + 2 mũ 4. 7 +.... + 2 mũ 2008.7

A= 7.(2 + 2 mũ 4 +....+ 2 mũ 22010 chia hết cho 7.

Các câu còn lại làm tương tự như câu a nha bạn!

Khách vãng lai đã xóa
Lê Minh Hiền
Xem chi tiết
Đoàn Đức Hà
16 tháng 12 2020 lúc 11:43

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

Khách vãng lai đã xóa
Đinh Thị Thùy Linh
Xem chi tiết
Hoàng Bảo Linh
Xem chi tiết
Nghiêm Yến Nhi
Xem chi tiết
Stephen Hawking
2 tháng 1 2019 lúc 19:10

Ta có: \(5+5^2+5^3+....+5^{12}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+.......+\left(5^{11}+5^{12}\right)\)

\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+........+5^{10}\left(5+5^2\right)\)

\(=\left(5+5^2\right).\left(1+5^2+.......+5^{10}\right)\)

\(=30.\left(1+5^2+......+5^{10}\right)⋮30\)(1)

Ta lại có: \(5+5^2+5^3+......+5^{12}\)

\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+.......+\left(5^{10}+5^{11}+5^{12}\right)\)

\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+........+5^{10}\left(1+5+5^2\right)\)

\(=5.31+5^4.31+......+5^{10}.31\)

\(=31\left(5+5^4+......+5^{10}\right)⋮31\)(2)

Từ (1) và (2) \(\Rightarrowđpcm\)

nguyen quang long
10 tháng 11 2019 lúc 20:20

lời giải là ngáo ngơ lơ tơ mơ

Khách vãng lai đã xóa
Trinh Nguyễn
Xem chi tiết
Kiều Vũ Linh
17 tháng 12 2023 lúc 6:11

Số số hạng của A:

98 - 1 + 1 = 98 (số)

Do 98 ⋮ 2 nên ta có thể nhóm các số hạng của A thành các nhóm mà mỗi nhóm có 2 số hạng như sau:

A = (5 + 5²) + (5³ + 5⁴) + ... + (5⁹⁷ + 5⁹⁸)

= 5.(1 + 5) + 5³.(1 + 5) + ... + 5⁹⁷.(1 + 5)

= 5.6 + 5³.6 + ... + 5⁹⁷.6

= 6.(5 + 5³ + ... + 5⁹⁷) ⋮ 6

Vậy A ⋮ 6

tống uy vũ
17 tháng 12 2023 lúc 8:47

A=(5+5^2)+(5^3+5^4)+...+(5^97+5^98)

A=5(1+5)+5^3(1+5)+...+5^97(1+5)

A=(5.6)+(5^3.6)+...+(5^97.6)

A=6.(5+5^3+...+5^97)

suy ra A⋮6

Suy ra A

bloom winx
Xem chi tiết