Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bối Bối
Xem chi tiết
Trần Ái Linh
4 tháng 1 2023 lúc 23:55

a) `P=x^2-4x+5`

`=(x^2-4x+4)+1`

`=(x^2-2.x.2+2^2)+1`

`=(x-2)^2+1`

Vì `(x-2)^2 >=0 ` nên `(x-2)^2+1 >=1 >0` với mọi `x`

`<=> (x-2)^2+1 >0` với mọi `x`

Vậy ta có điều phải chứng minh.

``

b) `P=x^2-2x+2`

`=(x^2-2x+1)+1`

`=(x^2-2.x.1+1^2)+1`

`=(x-1)^2+1`

Vì `(x-1)^2 >=0` với mọi `x`

`=>(x-1)^2+1 >=1 >0` với mọi `x`

`<=> (x-1)^2+1 >0` với mọi `x`

Vậy ta có điều phải chứng minh.

#Blue Sky
4 tháng 1 2023 lúc 23:58

\(a,P=x^2-4x+5\)

\(=x^2-2.x.2+4+1\)

\(=\left(x-2\right)^2+1\)

Vì \(\left(x-2\right)^2\ge0\forall x\) mà \(1>0\)

\(\Rightarrow\left(x-2\right)^2+1>0\forall x\)

Vậy đa thức \(P\) luôn luôn lớn hơn 0 \(\forall x\)

_____________________________________

\(b,P=x^2-2x+2\)

\(=x^2-2.x.1+1+1\)

\(=\left(x-1\right)^2+1\)

Vì \(\left(x-1\right)^2\ge0\forall x\) mà \(1>0\)

\(\Rightarrow\left(x-1\right)^2+1>0\forall x\)

Vậy đa thức \(P\) luôn luôn lớn hơn 0 \(\forall x\)

Chu Quang Linh
Xem chi tiết
Hoàng Huy
Xem chi tiết
Nguyễn Huy Tú
24 tháng 7 2021 lúc 13:35

\(x^2-2x+2=x^2-2x+1+1=\left(x-1\right)^2+1\ge1>0\forall x\)

Nguyễn Lê Phước Thịnh
25 tháng 7 2021 lúc 0:07

Ta có: \(x^2-2x+2\)

\(=x^2-2x+1+1\)

\(=\left(x-1\right)^2+1>0\forall x\)

Lyzimi
Xem chi tiết
Minh Triều
17 tháng 7 2015 lúc 11:43

-9x2+12x-15

=-9x2+2.3x.2-4-11

=-(9x2-2.3x.2+4)-11

=-(3x-2)2-11

Vì -(3x-2)2\(\le\)0 nên

-(3x-2)2-11<0

Vậy -9x2+12x-15 luôn âm với mọi x

Đinh Tuấn Việt
17 tháng 7 2015 lúc 11:51

Bắt chước cái gì ? 1 phút mà bắt chước đc à ? trieu dang toàn nghĩ mình là nhất.

ỉn2k8>.
Xem chi tiết
Aurora
30 tháng 6 2021 lúc 9:02

Bài 1

\(A=x^2-6x+15=x^2-2.3.x+9+6=\left(x-3\right)^2+6>0\forall x\)

\(B=4x^2+4x+7=\left(2x\right)^2+2.2.x+1+6=\left(2x+1\right)^2+6>0\forall x\)

Bài 2

\(A=-9x^2+6x-2021=-\left(9x^2-6x+2021\right)=-\left[\left(3x-1\right)^2+2020\right]=-\left(3x-1\right)^2-2020< 0\forall x\)

 

Ngô Chi Lan
Xem chi tiết
zZz Cool Kid_new zZz
17 tháng 5 2019 lúc 14:51

Ta có:\(\left|-2x^4-x^2-9\right|=\left|2x^4+x^2+9\right|\) vì ta có tính chất \(\left|a\right|=\left|-a\right|\)

Áp dụng bất đẳng thức trị tuyệt đối,ta có:

\(A=\left|2x^4+3x^2+9\right|-\left|2x^4+x^2+9\right|=\left|2x^4+4x^2+9-2x^4-x^2-9\right|=3x^2\ge0\) với \(\forall x\)

Tự tìm dấu bằng xảy ra -.-

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 4 2019 lúc 5:28

P = x2 - 2x + 2 = (x – 1)2 + 1

Do (x – 1)2 ≥ 0 ∀x nên (x – 1)2 + 1 ≥ 1 ∀x

Vậy P luôn lớn hơn 0 với mọi x.

bùi tiến dũng
Xem chi tiết
Kaori Miyazono
4 tháng 2 2018 lúc 17:23

\(P=x^2-2x+2\)

\(P=x^2-2x+1+1\)

\(P=\left(x-1\right)^2+1\)

Ta thấy \(\left(x-1\right)^2\ge0\)nên \(\left(x-1\right)^2+1>0\)

Dương
4 tháng 2 2018 lúc 17:23

Ta có:

\(P=x^2-2x+2\)

\(=\left(x^2-2x+1\right)+1\)

\(=\left(x-1\right)^2+1\)

Vì  \(\left(x-1\right)^2\ge0\)

\(\Rightarrow\left(x-1\right)^2+1>0\forall x\)

le anh
Xem chi tiết
Nguyễn Minh Đăng
25 tháng 6 2021 lúc 21:57

a) \(a^2-6a+10=\left(a^2-6a+9\right)+1=\left(a-3\right)^2+1\ge1\left(\forall a\right)\)

Dấu "=" xảy ra khi a = 3

b) \(4a^4-4a^3+a^2=a^2\left(4a^2-4a+1\right)=\left[a\left(2a-1\right)\right]^2\ge0\left(\forall a\right)\)

Dấu "=" xảy ra khi: \(\orbr{\begin{cases}a=0\\a=\frac{1}{2}\end{cases}}\)

c) \(x^3+y^3=\frac{1}{3}\left(3x^3+3y^3\right)\)

\(=\frac{1}{3}\left[\left(x^3+x^3+y^3\right)+\left(x^3+y^3+y^3\right)\right]\ge\frac{1}{3}\left(3x^2y+3xy^2\right)=x^2y+xy^2\) (Cauchy)

Dấu "=" xảy ra khi: x = y

Khách vãng lai đã xóa