Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thị Sương
Xem chi tiết
Trần Thị Sương
Xem chi tiết
phamletrongvinh
3 tháng 8 2017 lúc 21:25

mk chịu

Tiến Vỹ
3 tháng 8 2017 lúc 21:29

khó quá

Võ Thị Quỳnh Giang
3 tháng 8 2017 lúc 21:45

ta có: A=(x^2 +y^2 +z^2 +2xy+2yz+2xz)+(y^2 +2y+1)+(2.(z^2 +2z+1)=0

=>A=(x+y+z)^2   +  (y+1)^2   +  2.(z+1)^2  =0  (1)

Mà (x+y+z)^2 >=0 ; (y+1)^2 >=0 ; (2.(z+1)^2 >=0   (2)

từ (1),(2) suy ra:

\(\hept{\begin{cases}x+y+z=0\\y+1=0\\z+1=0\end{cases}}\)

=>\(\hept{\begin{cases}x=2\\y=-1\\z=-1\end{cases}}\)

Incursion_03
Xem chi tiết
Tạ Thu Hương
Xem chi tiết
Nguyễn Ngọc Lộc
20 tháng 7 2020 lúc 16:18

a, b, nhân vào là ra à

c, nghe cứ là lạ

d, cũng nhân là ra hà

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5=x^5+y^5\)

Nguyễn Lê Phước Thịnh
20 tháng 7 2020 lúc 16:24

a) Ta có: \(VT=\left(x-y-z\right)^2\)

\(=\left(x-y-z\right)\left(x-y-z\right)\)

\(=x^2-xy-xz-yx+y^2+yz-zx+zy+z^2\)

\(=x^2+y^2+z^2-2xy+2yz-2xz\)

=VP(đpcm)

b) Ta có: \(VT=\left(x+y-z\right)^2\)

\(=\left(x+y-z\right)\left(x+y-z\right)\)

\(=x^2+xy-xz+yx+y^2-yz-zx-zy+z^2\)

\(=x^2+y^2+z^2+2xy-2yz-2zx\)

=VP(đpcm)

c) Sửa đề: Chứng minh \(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)=x^4-y^4\)

Ta có: \(VT=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\)

\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)

\(=x^4-y^4\)

=VP(đpcm)

d) Ta có: \(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)

\(=x^5+y^5\)

=VP(đpcm)

Ngô Duy Hiếu
Xem chi tiết
Nguyên Nguyễn Khôi
Xem chi tiết
Trương Thị Thu Thảo
Xem chi tiết
nguyễn ngọc anh
Xem chi tiết
Phan Thị Hà Vy
Xem chi tiết