tìm x biết
1+3+5+7+......+(2x+1) = 625
Tìm số nguyên x biết: 1+3+5+7+......+(2x+1) = 625
Do 1+3+5+7+......+(2x+1) = 625 nên x thuộc N
Đặt A = 1+3+5+7+......+(2x+1)
Số số hạng của A là : [(2x+1) - 1] / 2 + 1 = x+1(số hạng)
Tổng A = {[(2x+1) + 1] . (x+1)} / 2 = (2x+2)(x+1) / 2 = 2(x+1)2 / 2 = (x+1)2 = 625
=>x+1=25
=>x=24
Nếu thấy đúng thì k nha !!!!
Tìm x biết:
a,(2x+3/5)^2-9/25=0
b,(3x-1).(-1/2x+5)=0
c, (7/5)^x+1-(1/5)^x=-4/625
d,(2/3)^x+2+(2/3)^x+1=20/27
a) \(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0\)
\(\left(2x+\frac{3}{5}\right)^2=\frac{9}{25}\)
\(\left(2x+\frac{3}{5}\right)^2=\left(\frac{3}{5}\right)^2\)
\(=>2x+\frac{3}{5}=\frac{3}{5}\)
\(2x=\frac{3}{5}-\frac{3}{5}\)
\(2x=0\)
\(x=0:2\)
\(x=0\)
b) \(\left(3x-1\right).\left(-\frac{1}{2x}+5\right)=0\)
=> \(\left(3x-1\right)=0\)hoặc \(\left(-\frac{1}{2x}+5\right)=0\)hoặc \(\left(3x-1\right)\)và\(\left(-\frac{1}{2x}+5\right)\)cùng bằng 0.
\(\orbr{\begin{cases}3x-1=0\\-\frac{1}{2x}+5=0\end{cases}}=>\orbr{\begin{cases}3x=1\\-\frac{1}{2x}=-5\end{cases}}=>\orbr{\begin{cases}x\in\varnothing\\2x=\frac{1}{5}\end{cases}}=>x=\frac{1}{5}:2=>x=\frac{1}{10}\)
a) \(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0\)
\(\left(2x+\frac{3}{5}\right)^2=0+\frac{9}{25}\)
\(\left(2x+\frac{3}{5}\right)^2=\frac{9}{25}\)
\(\left(2x+\frac{3}{5}\right)^2=\left(\frac{3}{5}\right)^2\)
\(\orbr{\begin{cases}2x+\frac{3}{5}=\frac{3}{5}\\2x+\frac{3}{5}=-\frac{3}{5}\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}\)
b) \(\left(3x-1\right)\left(-\frac{1}{2}x+5\right)=0\)
\(\left(3x-1\right)\left(-\frac{x}{2}+5\right)=0\)
\(\left(3x-1\right)\left(5-\frac{x}{2}\right)=0\)
\(\orbr{\begin{cases}3x-1=0\\5-\frac{x}{2}=0\end{cases}}\)
\(\orbr{\begin{cases}x=\frac{1}{3}\\x=10\end{cases}}\)
Tìm x, biết:
1+3+5+........+ (2x+1) =625
Tìm x biết (-3/5)^2x-1=-81/625
Tìm x, biết:
a) \(\left(\frac{4}{5}\right)^{2x+7}=\frac{625}{256}\)
b) \(\frac{7^{x+2}+7^{x+1}+7^x}{57}=\frac{5^x+5^{2x+1}+5^{2x+2}}{132}\)
1, Tìm x biết
a, ( 4/5 )^2x+5 = 625/256
b, ( 3x - 4 )^4 = ( 3x - 4 )^2
c, 3^x+1 = 9^x
d, 2^2x+3 = 4^x-5
a: =>2x+5=4
=>2x=-1
hay x=-1/2
b: \(\Leftrightarrow\left(3x-4\right)^2\cdot\left[\left(3x-4\right)^2-1\right]=0\)
=>(3x-4)(3x-5)(3x-3)=0
hay \(x\in\left\{1;\dfrac{4}{3};\dfrac{5}{3}\right\}\)
c: \(\Leftrightarrow3^{x+1}=3^{2x}\)
=>2x=x+1
=>x=1
d: \(\Leftrightarrow2^{2x+3}=2^{2x-10}\)
=>2x+3=2x-10
=>0x=-13(vô lý)
a, (4/5)2x+7= 625/256
b, 7x+2 +7x+1 + 7x / 57 = 52x + 2x+1 + 52x+3 / 131
a: \(\Leftrightarrow2x+7=-4\)
=>2x=-11
hay x=-11/2
b: \(\Leftrightarrow\dfrac{7^x\cdot49+7^x\cdot7+7^x}{57}=\dfrac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)
\(\Leftrightarrow7^x=5^{2x}\)
=>x=0
Tìm x
1+3+5+...+(2x-1)=625
Bài 3 Tìm x biết
a) \(\left(x-4\right)^2=\left(x-4\right)^4\)
b) \(\left(\dfrac{4}{5}\right)^{2x+7}=\dfrac{625}{256}\)
c) \(\dfrac{7^{x+2}+7^{x+1}+7^x}{57}=\dfrac{5^{2x}+5^{2x+1}+5^{2x+2}}{131}\)
a) \(\left(x-4\right)^2=\left(x-4\right)^4\)
\(\Rightarrow\left(x-4\right)^2-\left(x-4^4\right)=0\)
\(\Rightarrow\left(x-4\right)^2.\left[1-\left(x-4\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-4\right)^2=0\\1-\left(x-4\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\\left(x-4\right)^2=1^2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x-4=1\\x-4=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=5\\x=3\end{matrix}\right.\)