tìm giá trị nhỏ nhất của C=2x^2-y tại x+y=2
giúp vs mik đg vội lắm
tìm giá trị nhỏ nhất/ lớn nhất của biểu thức C=2x^2-y tại x-y=2
giúp mik với mình đang vội lắm
x - y = 2 => x = y + 2 thay vào bt C, ta đc :
C = 2(y+2)^2 - y
= 2(y^2 + 4y + 4) - y
= 2(y^2 + 7/2 .y + 2)
= 2(y+7/4)^2 - 17/8 ≥ -17/8
=> Min = -17/8 tại y = -7/4, x =1/4
Tìm giá trị nhỏ nhất của A=|x-2/3|+3/4
Giúp mik vs mik đang gấp lắm!!
Áp dụng KT \(\left|x\right|\ge0\)\(\forall\)\(x\)
BG :
Ta có : \(\left|x-\frac{2}{3}\right|\ge0\)\(\forall\)\(x\)
nên : \(\left|x-\frac{2}{3}\right|+\frac{3}{4}\ge0+\frac{3}{4}\)\(\forall\)\(x\)
hay \(A\ge\frac{3}{4}\)\(\forall\)\(x\)
Dấu " = " xảy ra :
\(\Leftrightarrow\)\(\left|x-\frac{2}{3}\right|=0\)
\(\Leftrightarrow\)\(x-\frac{2}{3}=0\)
\(\Leftrightarrow\)\(x=\frac{2}{3}\)
Vậy GTNN của \(A=\frac{3}{4}\)đạt được khi \(x=\frac{2}{3}\)
tìm giá trị nhỏ nhất của biểu thức:
\(x^2+y^2-x+6y+10\)
tìm giá trị lớn nhất của biểu thức
\(2x-2x^2-5\)
giúp mik với mik tik cho :)
Câu b mình viết nhầm dấu \(\ge\)đáng lẽ đúng phải là \(\le\)
a)
\(A=x^2+y^2-x+6y+10.\)
\(=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy \(MinA=\frac{3}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}}\)
b)
\(B=2x-2x^2-5\)
\(=-2\left(x^2-x+\frac{1}{4}\right)+2.\frac{1}{4}-5\)
\(=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
Vậy \(MaxB=-\frac{9}{2}\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
a) x2 + y2 - x + 6y + 10 = (x2 - x + 1/4) + (y2 + 6y + 9) + 3/4
=(x - 1/2)2 + (y + 3)2 + 3/4 \(\ge\)3/4
Dấu "=" xảy ra <=> (x - 1/2)2 = 0 và (y + 3)2 = 0 <=> x = 1/2 ; y = -3
Vậy GTNN của bt đã cho là 3/4 khi x = 1/2 và y = -3
b) A = 2x - 2x2 - 5
<=> 2A = 2(2x - 2x2 - 5)
<=> 2A = -4x2 + 4x - 5
<=> 2A = -(4x2 - 4x + 1) - 4
<=> 2A = -(2x - 1)2 - 4\(\le\)-4
<=> A \(\le\)-2
Dấu "=" xảy ra <=>: (2x - 1)2 = 0 <=> x = 1/2
Vậy GT LN của bt đã cho là -2 khi và chỉ khi x = 1/2
Bài 1:Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=x^2+y^2/x^2+xy+4y^2 với x2+xy+4y^2 khác 0.Bài 2:Với x;y thỏa mãn điều kiện x^2+y^2=1.Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=2(xy+y^2)/1+2x^2+2xy.Giúp mik nhé mai mik đi hc r
Tìm giá trị nhỏ nhất của:
a. x^2 - x + 1
b. x^2 + y^2 - 4(x + y) + 16
c. 2x^2 + 8x + 9
giúp mik với mik cần gấp
k cho mik nhá
\(a,x^2-x+1\)
\(x^2-x+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
\(< =>MIN=\frac{3}{4}\)dấu"=" xảy ra khi \(x=\frac{1}{2}\)
\(b,x^2+y^2-4\left(x+y\right)+16\)
\(x^2+y^2-4x-4y+16\)
\(\left(x^2-4x+4\right)+\left(y^2-4y+4\right)+8\)
\(\left(x-2\right)^2+\left(y-2\right)^2+8\ge8\)
\(MIN=8\)dấu "=" xảy ra khi \(x=y=2\)
\(2x^2+8x+9\)
\(\left(x^2+8x+16\right)+x^2-7\)
\(\left(x+4\right)^2+x^2-7\ge-7\)
\(< =>MIN=-7\)dấu "=" xảy ra khi \(x=-4\)
tính giá trị biểu thức x^2+4xy+y^2 tại x=5 và y=4
m người giúp mik vs mik đg râts cần
Tìm giá trị lớn nhất và giá trị nhỏ nhất của p/s sau: A= n-3/n+2 với n là số nguyên Giúp mik vs mn ơi, mik đag cần gấp lắm!!!
\(A=\dfrac{n-3}{n+2}=1-\dfrac{5}{n+2}\)
TH1 : n >=-1 => n+2>=1 >0
\(\Rightarrow A\ge1-\dfrac{5}{1}=-4\)
Dấu = khi n=-1
TH2: n<= -3 => n+2<=-1 <0
\(\Rightarrow A\le1-\dfrac{5}{-1}=6\)
Dấu = xảy ra khi n=-3
\(A=\dfrac{n-3}{n+2}=1-\dfrac{5}{n+2}\left(n\ne-2\right)\)
Vì n là số nguyên khác -2
TH1 : \(n\ge-1\Leftrightarrow n+2\ge1>0\Leftrightarrow\dfrac{5}{n+2}\le\dfrac{5}{1}=5\)
\(\Leftrightarrow1-\dfrac{5}{n+2}\ge1-5\Leftrightarrow A\ge-4\)
\(n+2>0\Leftrightarrow\dfrac{5}{n+2}>0\Leftrightarrow A< 1\)
Vậy với \(n\ge-1\)thì \(-4\le A< 1\left(1\right)\)
TH2: \(n\le-3\Leftrightarrow n+2\le-1< 0\Leftrightarrow-\left(n+2\right)\ge1>0\)
\(\Leftrightarrow\dfrac{5}{-\left(n+2\right)}\le\dfrac{5}{1}=5\Leftrightarrow\dfrac{5}{n+2}\ge-5\Leftrightarrow A\le1-\left(-5\right)=6\)
\(n+2< 0\Leftrightarrow\dfrac{5}{n+2}< 0\Leftrightarrow A>1\)
Vậy với \(n\le-3\)thì \(1< A\le6\left(2\right)\)
Từ (1),(2) suy ra \(-4\le A\le6\)
A=-4 khi n=-1
A=6 khi n=3
## Mình đã cố chi tiết hết sức, mong bạn hiểu được
1/ Cho x + y = 2
Chứng minh xy nhỏ hơn hoặc bằng 1.
2/
a) Tìm giá trị lớn nhất của \(A=3-\left(\frac{4}{9}x+\frac{2}{15}\right)^6.\)
b) Tìm giá trị lớn nhất của \(B=2,25-\frac{1}{4}\left(1+2x\right)^2.\)
c) tìm giá trị lớn nhất của \(C=\frac{1}{3+\frac{1}{2}\left(2x-3\right)^4}.\)
Mik đg cần gấp ai làm nhanh và đúng nhất mik sẽ tik cho 3 cái!
1/ Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{2^2}{4}=\frac{4}{4}=1\)
Dấu "=" xảy ra khi x=y=1
Máy mình bị lỗi nên ko nhìn được các bài tiếp theo
Chúc bạn học tốt :)
Ta có : x+y=2 => x=2-y. Thay vào bt ta đc : xy= (2-y).y = 2y -y^2
Vì y^2 >= 0 =>2y-y^2 nhỏ hơn hoặc bằng 0
tìm GTNN,GTLN của biểu thức sau
a)giá trị nhỏ nhất
A= 9x^2-x+5
b) Giá trị nhỏ nhất
B= 4x^2+2y^2+4xy+2018
c) gia tri lớn nhất
C= 3x-4x^2+10
d) giá trị lớn nhất
D= -5x^2-y^2+2xy-4x+2016
giúp mik với.GẤP LẮM Ạ
a) = 9(x2 - 2.x/2.9 + 1/324) - 9/324 +5
GTNN A = 4,97
b) = (2x +y)2 + y2 + 2018
GTNN B = 2018 khi x=0;y=0
c) = -4(x2 - 2.3x/ 4.2 + 9/16) +9/16 +10
GTLN C = 169/16
d) = -(x-y)2 - (2x +1) +1 + 2016
GTLN D = 2017
(trg bn cho bài khó dữ z, làm hại cả não tui)