không dùng máy tính hay lập bảng hãy tính
tan 15 độ , tan 22độ 30 , cos 15 độ
Hãy tính các tỉ số lượng giác sau( Lưu ý: không được dùng bảng lượng giác và máy tính; trình bày ra)
a) tan 15 độ; sin 15 độ
b) sin 22 độ 30 phút ; tan 22 độ 30 phút
c) cos 36 độ
Không dùng máy tính tính
sin 15, cos 75, tan 15, cot 75 ( độ )
sin15=sin(60-45) kiến thức cơ bản mà
\(\sin15^0=\dfrac{\sqrt{6}-\sqrt{2}}{4}=\cos75^0\)
\(\tan15^0=\cot75^0=2-\sqrt{3}\)
Tính tan 15o (không dùng bảng số hay máy tính)
1)tính tan 15 độ mà không dùng bảng số,không dùng máy tính
2) CMR cos15độ=\(\frac{\sqrt{6}+\sqrt{2}}{4}\)
(không dùng bảng số,không dùng máy tính)
a. Có nhiều cách nhé. Với lớp 9 cô dùng cách này. Cô hướng dẫn nhé :)
Giả thiệt cho như hình vẽ. Gỉa sử AB = 1cm, khi đó do góc ADB = 30độ nên \(\frac{AB}{BD}=\frac{1}{2};\frac{AB}{AD}=\frac{\sqrt{3}}{3}\)
Vậy \(AC=AD+DC=AD+DB=2+\sqrt{3}\)
Vậy \(tan15=\frac{AB}{AC}=\frac{1}{2+\sqrt{3}}=2-\sqrt{3}\)
b. Dựa vào công thức : \(tan^215+1=\frac{1}{cos^215}\)
Không dùng bảng số hay máy tính cầm tay, tính giá trị của các biểu thức sau:
a) \(\left( {2\sin {{30}^o} + \cos {{135}^o} - 3\tan {{150}^o}} \right).\left( {\cos {{180}^o} - \cot {{60}^o}} \right)\)
b) \({\sin ^2}{90^o} + {\cos ^2}{120^o} + {\cos ^2}{0^o} - {\tan ^2}60 + {\cot ^2}{135^o}\)
c) \(\cos {60^o}.\sin {30^o} + {\cos ^2}{30^o}\)
a)
Đặt \(A = \left( {2\sin {{30}^o} + \cos {{135}^o} - 3\tan {{150}^o}} \right).\left( {\cos {{180}^o} - \cot {{60}^o}} \right)\)
Ta có: \(\left\{ \begin{array}{l}\cos {135^o} = - \cos {45^o};\cos {180^o} = - \cos {0^o}\\\tan {150^o} = - \tan {30^o}\end{array} \right.\)
\( \Rightarrow A = \left( {2\sin {{30}^o} - \cos {{45}^o} + 3\tan {{30}^o}} \right).\left( { - \cos {0^o} - \cot {{60}^o}} \right)\)
Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:
\(\left\{ \begin{array}{l}\sin {30^o} = \frac{1}{2};\tan {30^o} = \frac{{\sqrt 3 }}{3}\\\cos {45^o} = \frac{{\sqrt 2 }}{2};\cos {0^o} = 1;\cot {60^o} = \frac{{\sqrt 3 }}{3}\end{array} \right.\)
\( \Rightarrow A = \left( {2.\frac{1}{2} - \frac{{\sqrt 2 }}{2} + 3.\frac{{\sqrt 3 }}{3}} \right).\left( { - 1 - \frac{{\sqrt 3 }}{3}} \right)\)
\(\begin{array}{l} \Leftrightarrow A = - \left( {1 - \frac{{\sqrt 2 }}{2} + \sqrt 3 } \right).\left( {1 + \frac{{\sqrt 3 }}{3}} \right)\\ \Leftrightarrow A = - \frac{{2 - \sqrt 2 + 2\sqrt 3 }}{2}.\frac{{3 + \sqrt 3 }}{3}\\ \Leftrightarrow A = - \frac{{\left( {2 - \sqrt 2 + 2\sqrt 3 } \right)\left( {3 + \sqrt 3 } \right)}}{6}\\ \Leftrightarrow A = - \frac{{6 + 2\sqrt 3 - 3\sqrt 2 - \sqrt 6 + 6\sqrt 3 + 6}}{6}\\ \Leftrightarrow A = - \frac{{12 + 8\sqrt 3 - 3\sqrt 2 - \sqrt 6 }}{6}.\end{array}\)
b)
Đặt \(B = {\sin ^2}{90^o} + {\cos ^2}{120^o} + {\cos ^2}{0^o} - {\tan ^2}60 + {\cot ^2}{135^o}\)
Ta có: \(\left\{ \begin{array}{l}\cos {120^o} = - \cos {60^o}\\\cot {135^o} = - \cot {45^o}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{\cos ^2}{120^o} = {\cos ^2}{60^o}\\{\cot ^2}{135^o} = {\cot ^2}{45^o}\end{array} \right.\)
\( \Rightarrow B = {\sin ^2}{90^o} + {\cos ^2}{60^o} + {\cos ^2}{0^o} - {\tan ^2}60 + {\cot ^2}{45^o}\)
Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:
\(\left\{ \begin{array}{l}\cos {0^o} = 1;\;\;\cot {45^o} = 1;\;\;\cos {60^o} = \frac{1}{2}\\\tan {60^o} = \sqrt 3 ;\;\;\sin {90^o} = 1\end{array} \right.\)
\( \Rightarrow B = {1^2} + {\left( {\frac{1}{2}} \right)^2} + {1^2} - {\left( {\sqrt 3 } \right)^2} + {1^2}\)
\( \Leftrightarrow B = 1 + \frac{1}{4} + 1 - 3 + 1 = \frac{1}{4}.\)
c
Đặt \(C = \cos {60^o}.\sin {30^o} + {\cos ^2}{30^o}\)
Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:
\(\sin {30^o} = \frac{1}{2};\;\;\cos {30^o} = \frac{{\sqrt 3 }}{2};\;\cos {60^o} = \frac{1}{2}\;\)
\( \Rightarrow C = \frac{1}{2}.\frac{1}{2} + {\left( {\;\frac{{\sqrt 3 }}{2}} \right)^2} = \frac{1}{4} + \frac{3}{4} = 1.\)
Không dùng máy tính hãy tính giá trị a) A = (sin 30° -cos 60° ) + ( tan 40° . tan 50°) b) B = ( cos² 20° +cos² 70° ) - (cot 42° . cot 48°) Tôi cần gấp nên mọi người giúp ạ
Không dùng bảng số và máy tính hãy so sánh:
a, sin 20 0 và sin 70 0
b, cos 60 0 và cos 70 0
c, tan 73 0 20 ' và tan 45 0
d, cot 20 0 và cot 37 0 40 '
a, sin 20 0 < sin 70 0
b, cos 60 0 > cos 70 0
c, tan 73 0 20 ' > tan 45 0
d, cot 20 0 > cot 37 0 40 '
Hãy xác định dấu của các tích (không dùng bảng số và máy tính)
sin ( - 50 ο ) tan 170 ο cos ( - 91 ο ) sin 530 ο
sin ( - 50 ο ) < 0 ; tan 170 ο < 0 ;
cos ( - 90 ο ) < 0 ; sin 530 ο > 0 ,
do đó tích của chúng âm
Bài 1: Không dùng bảng số và máy tính, hãy so sánh
a, Sin 35o và cos 55o
b, Tan 12o và cot 78o
a,35+55=90 nên sin 35=cos 55
b,12+78=90 nên tan 12 =cot 78
tik mik nha
a: \(\sin35^0=\cos55^0\)
b: \(\tan12^0=\cot78^0\)