\(\frac{7}{1\times3}+\frac{7}{3\times5}+\frac{7}{5\times7}+......+\frac{7}{99\times101}\)
Các bạn giúp mk, mk cần gấp!
\(\frac{4}{1\times3}+\frac{4}{3\times5}+\frac{4}{5\times7}+......+\frac{4}{99\times101}\)
\(\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{99.101}\)
\(=2.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=2.\left(1-\frac{1}{101}\right)\)
\(=2.\frac{100}{101}=\frac{200}{101}\)
Đặt \(A=\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+..+\frac{4}{99.101}\)
\(A=2.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
\(A=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(A=2.\left(1-\frac{1}{101}\right)\)
\(A=\frac{2.100}{101}=\frac{200}{101}\)
Ủng hộ mk nha !!! ^_^
Ta gọi tổng trên là A
Ta có: A = 4/1x3+4/3x5 + 4/5x7+...+4/99x101
=>A x 2/4 = 2/1x3+2/3x5+2/5x7+...+2/99x101
=1-1/2+1/2-1/3+1/3-1/4+....+1/99+1/101
=1-1/101=100/101
\(\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+......+\frac{2}{99\times101}\)
Giúp mình với gấp lắm !!!
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)
\(=2.\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\right)\)
\(=2.\left(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\right)\)
\(=\frac{1}{3}-\frac{1}{101}=\frac{101}{303}-\frac{3}{303}=\frac{98}{303}\)
Đặt A = \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)
\(\Leftrightarrow A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.100}\)
\(=1-\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}-\frac{1}{7}+\frac{1}{9}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=1-\frac{1}{100}=\frac{99}{100}\)
Ta có:
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)
\(=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)
\(=\frac{1}{3}-\frac{1}{101}\)
\(=\frac{98}{303}\)
tính :\(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+\frac{1}{4\times5\times6}+\frac{1}{5\times6\times7}+\frac{1}{6\times7\times8}+\frac{1}{7\times8\times9}+\frac{1}{8\times9\times10}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}.\left(\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right)=\frac{1}{2}.\frac{22}{45}=\frac{11}{45}\)
thực hiện phép tính
A=\(\frac{3}{1\times5}+\frac{3}{5\times10}+....+\frac{3}{100\times105}\)
B=
\(\dfrac{5}{1\times3\times5}+\dfrac{5}{3\times5\times7}+...+\dfrac{5}{99\times101\times103}\)
Ta có:
\(A=\frac{3}{1\cdot5}+\frac{3}{5\cdot10}+...+\frac{3}{100\cdot105}\)
\(=\frac{3}{5}\cdot\left(\frac{5}{1\cdot5}+\frac{5}{5\cdot10}+...+\frac{5}{100\cdot105}\right)\)
\(=\frac{3}{5}\cdot\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{105}\right)\)
\(=\frac{3}{5}\left(1-\frac{1}{105}\right)=\frac{3}{5}\cdot\frac{104}{105}=\frac{312}{525}\)
CHỨNG TỎ:
\(\frac{2}{1\times3}\)+\(\frac{2}{3\times5}\)+\(\frac{2}{5\times7}\)+...+\(\frac{2}{99\times101}\)<1
\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)
\(=2\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)
\(=2.\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=1-\frac{1}{100}\Rightarrowđpcm\)
Ta có :
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}< 1\)\(\left(đpcm\right)\)
=1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101=1-1/101=100/101<1
Tính nhanh
\(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+\frac{2}{9\times11}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\)
\(=\frac{1}{1}-\frac{1}{11}=\frac{10}{11}\)
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{9.11}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{9}-\frac{1}{11}\)
\(=1-\frac{1}{11}=\frac{10}{11}\)
\(\left(\frac{4}{1\times3}+\frac{4}{3\times5}+\frac{4}{5\times7}+\frac{4}{7\times9}\right)\times10-x=0\)
(4/1*3+4/3*5+4/5*7+4/7*9)*10-x=0
=4*2/1*3+4*2/3*5+4*2/5*7+4*2/7*9
=1/1+1/3+1/5+1/7+1/9
=1/1-1/9
=8/9
8/9*10-x=0
89-x=0
x=89-0
x=89
\(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+\frac{1}{6\times7}+\frac{1}{7\times8}+\frac{1}{8\times9}+\frac{1}{9\times10}\)
1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9+1/9.10
=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6+1/7-1/7+1/8-1/8+1/9+1/9-1/10
=1/2-1/10
=5/10-1/10
=4/10=2/5
\(\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+\frac{1}{5x6}+\frac{1}{6x7}+\frac{1}{8x9}+\frac{1}{9x10}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(\frac{1}{2}-\frac{1}{10}\)
\(\frac{2}{5}\)
= 1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10
= 1/2-0-0-0-0-0-0-0-0-1/10
=1/2 - 1/10
=2/5
tớ trước nhé
\(\left(\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+\frac{1}{9\times11}\right)\times y=\frac{2}{3}\)
Tìm y
\(\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+\frac{2}{9\times11}\right)\times y=\frac{2}{3}\)
\(\frac{1}{2}\times\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\times y=\frac{2}{3}\)
\(\frac{1}{2}\times\left(\frac{1}{1}-\frac{1}{11}\right)\times y=\frac{2}{3}\)
\(\frac{1}{2}\times\frac{10}{11}\times y=\frac{2}{3}\)
\(\frac{5}{11}\times y=\frac{2}{3}\) => \(y=\frac{2}{3}:\frac{5}{11}=\frac{2}{3}\times\frac{11}{5}=\frac{22}{15}\)