tìm giá trị nhỏ nhất H=x^2+2y^2-2xy+6y+2023
\(A=\left(x^2+y^2+36-2xy-12x+12y\right)+5y^2-10y+5+109\)
\(A=\left(x-y-6\right)^2+5\left(y-1\right)^2+109\ge109\)
\(A_{min}=109\) khi \(\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)
Tìm giá trị nhỏ nhất của B=x^2+2y^2-2xy+2x-6y+10
Ta có: B = x2 + 2y2 - 2xy + 2x - 6y + 10
B = (x2 - 2xy + y2) + 2x - 6y + y2 + 10
B = (x - y)2 + 2(x - y) + 1 - 4y + y2 + 4 + 5
B = (x - y + 1)2 + (y - 2)2 + 5 \(\ge\)5 \(\forall\)x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y+1=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=y-1\\y=2\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy MinB = 5 <=> x = 1 và y = 2
Tìm giá trị nhỏ nhất của :
A=x^2-2xy+6y^2-12x+2y+45
x^2 - 2xy + 6y^2 - 12x + 2y +45
= x^2 - 2x(y+6) + (y+6)^2 - (y+6)^2 + 6y^2 +2y + 45
= (x - y - 6)^2 - y^2 - 12y - 36 + 6y^2 + 2y + 45
= (x - y - 6)^2 + 5y^2 - 10y + 9
= (x - y - 6)^2 + 5.(y^2 - 2y +1) + 4
= (x - y - 6)^2 + 5.(y-1)^2 + 4
=>> MIN = 4 khi (x;y) = {(7;1)}
\(A=x^2-2xy+6y^2-12x+2y+45\)
\(=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+4\)
\(=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)
GTNN A = 4 Khi: \(\hept{\begin{cases}y-1=0\\x-y-6=0\end{cases}\Rightarrow\hept{\begin{cases}y=1\\x=7\end{cases}}}\)
\(A=x^2-2xy+6y^2-12x+2y\)\(+45\)
\(=x^2+y^2+36-2xy-12x\)\(+12y+5y^2-10y+5+4\)
\(=\left(x-y-6\right)^2+5\left(y-1\right)^2\)\(+4\ge4\)
GTNN của A là 4 khi \(\hept{\begin{cases}y-1=0\\x-y-6=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}y=1\\x-y=6\end{cases}\Rightarrow\hept{\begin{cases}y=1\\x=7\end{cases}}}\)
Vậy BT A đạt giá trị nhỏ nhất là 4 tại x = 7 và y = 1
Tìm giá trị nhỏ nhất: A = x2 - 2xy + 6y2 - 12x + 2y + 45
\(A=x^2-2xy+6y^2-12x+2y+54\)
\(A=x^2-2xy+y^2-12x+12y+36+5y^2-10y+5+4\)
\(A=\left(x-y\right)^2-2.6\left(x-y\right)+36+5\left(y^2-2y+1\right)+4\)
\(A=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\)
Do: \(\left(x-y-6\right)^2\ge0\forall xy\); \(5\left(y-1\right)^2\ge0\forall y\)
\(\Rightarrow\left(x-y-6\right)^2+5\left(y-1\right)^2\ge0\)
\(\Leftrightarrow A=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)
\(\Rightarrow A_{Min}=4\)
Dấu "=" xảy ra khi \(x=7;y=1\)
Tìm giá trị nhỏ nhất của \(x^2+2y^2+2xy+4x+6y+1\)
<=> x^2 + 2x(y+2) + y^2+4y+4+y^2+2y+1-4
<=> x^2 + 2x(y+2) + (y+2)^2 + (y+1)^2 - 4
<=> (x+y+2)^2 + (y+1)^2 - 4 >= -4
min = -4 khi y = -1 , x = -1
\(=\left(x+y+2\right)^2+\left(y+1\right)^2-4\)
Vì \(\left(x+y+2\right)^2\ge0\forall x\) , \(\left(y+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+y+2\right)^2+\left(y+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+y+2\right)^2+\left(y+1\right)^2-4\ge-4\forall x\)
Vậy GTNN của A=-4 Dấu bằng xảy ra khi
\(\Rightarrow\hept{\begin{cases}\left(x+y+2\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2-y\\y=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=-1\end{cases}}\)
Vậy GTNN của A=-4 khi và chỉ khi x=-3 , y=-1
Tìm giá trị nhỏ nhất của biểu thức Q= x2+2y2+2xy - 2x - 6y +2015
\(Q=x^2+2y^2+2xy-2x-6y+2015\)
\(Q=x^2+2x\left(y-1\right)+2y^2-6y+2015\)
\(Q=x^2+2x\left(y-1\right)+y^2-2y+1+y^2-4y+4+2010\)
\(Q=x^2+2x\left(y-1\right)+\left(y-1\right)^2+\left(y-2\right)^2+2010\)
\(Q=\left(x+y-1\right)^2+\left(y-2\right)^2+2010\ge2010\forall x;y\)
Dấu "=" xảy ra khi x=-3;y=4
\(Q=x^2+2y^2+2xy-2x-6y+2015\)
\(Q=\left(x^2+y^2+1+2xy-2x-2y\right)+\left(y^2-4y+4\right)+2010\)
\(Q=\left(x+y-1\right)^2+\left(y-2\right)^2+2010\ge2010\)
Dâu'=' xảy ra khi và chỉ khi
\(\hept{\begin{cases}x+y-1=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)
Vậy giá trị nhỏ nhất của Q bằng 2010, xảy ra khi x=-1,y=2
Tìm giá trị nhỏ nhất cảu biểu thức : \(x^2+2xy+2y^2+2\sqrt{2}x+2\left(\sqrt{2}+1\right)y+2023\)
Tìm giá trị nhỏ nhất A=x2-2xy+6y2 -12x+2y+45
\(A=x^2-2xy+6y^2-12x+2y+45\)
\(=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+4\)
\(=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)
Gía trị nhỏ nhất : \(A=4\)Khi \(\hept{\begin{cases}y-1=0\\x-y-6=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\x=7\end{cases}}\)
tìm giá trị nhỏ nhất của biểu thức M=2x^2+2y^2-6x-6y+2xy+11
Lời giải:
$M=(x^2+y^2+2xy)+x^2+y^2-6x-6y+11$
$=(x+y)^2+x^2+y^2-6x-6y+11$
$=(x+y)^2-4(x+y)+4+(x^2-2x+1)+(y^2-2y+1)+5$
$=(x+y-2)^2+(x-1)^2+(y-1)^2+5\geq 0+0+0+5=5$
Vậy $M_{\min}=5$. Giá trị này đạt tại $x+y-2=x-1=y-1=0$
$\Leftrightarrow x=y=1$