Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trang nguyễn
Xem chi tiết
trang nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 9 2021 lúc 20:31

e: ĐKXĐ: \(x\ge\dfrac{5}{2}\)

g: ĐKXĐ: \(x\le-4\)

Nga Nguyen
Xem chi tiết
trà my
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 9 2021 lúc 15:41

a: ĐKXĐ: \(x\in\varnothing\)

b: ĐKXĐ: \(-\sqrt{3}\le x\le\sqrt{3}\)

Jennie Kim
Xem chi tiết
Anime Tổng Hợp
19 tháng 2 2020 lúc 15:37

\(\sqrt{2020}+\sqrt{-\frac{3}{x+3}}\)

Căn thức trên có nghĩa khi:\(\hept{\begin{cases}x+3\ne0\\-\frac{3}{x+3}>0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-3\\x+3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-3\\x< -3\end{cases}}}}\)

\(\Rightarrow x< -3\)

Khách vãng lai đã xóa
Nguyễn Trúc Phương
Xem chi tiết
Dương Tịch
Xem chi tiết
Phạm Thị Thùy Linh
12 tháng 6 2019 lúc 20:10

\(a,\)\(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}\)

\(đkxđ\Leftrightarrow\sqrt{\left(x-1\right)^2}\ge0\)

\(\Rightarrow x-1\ge0\Rightarrow x\ge1\)

\(b,\)\(\sqrt{x+3}+\sqrt{x+9}\)

\(đkxđ\Leftrightarrow\hept{\begin{cases}x+3\ge0\\x+9\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-3\\x\ge-9\end{cases}}}\)

\(\Rightarrow x\ge-3\)

Phạm Thị Thùy Linh
12 tháng 6 2019 lúc 20:15

\(c,\)\(\sqrt{\frac{x-1}{x+2}}\)

\(đkxđ\Leftrightarrow\hept{\begin{cases}x+2\ne0\\\frac{x-1}{x+2}\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ne-2\\\frac{x-1}{x+2}\ge0\end{cases}}}\)

\(\frac{x-1}{x+2}\ge0\)\(\Rightarrow\orbr{\begin{cases}x-1\ge0;x+2>0\\x-1\le0;x+2< 0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x\ge-1;x>-2\\x\le1;x< 2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x\ge-1\\x< 2\end{cases}}\)

Vậy căn thức xác định khi x \(\ge\)-1 hoawck x < 2

Phạm Thị Thùy Linh
12 tháng 6 2019 lúc 20:22

\(d,\)\(\sqrt{x-2}-\frac{1}{x-5}\)

\(đkxđ\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}xđ\\\frac{1}{x-5}xđ\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x-2\ge0\\x-5\ne0\end{cases}\Rightarrow\orbr{\begin{cases}x\ge2\\x\ne5\end{cases}}}\)

Vậy biểu thức xác định \(\Leftrightarrow x\ge2\)và \(x\ne5\)

Gia Bảo
Xem chi tiết
Nguyễn Hoàng Minh
17 tháng 9 2021 lúc 11:06

\(2,\\ a,\sqrt{4x-4}+\sqrt{9x-9}-\sqrt{25x-25}=7\left(x\ge1\right)\\ \Leftrightarrow2\sqrt{x-1}+3\sqrt{x-1}-5\sqrt{x-1}=7\\ \Leftrightarrow0\sqrt{x-1}=7\Leftrightarrow x\in\varnothing\\ b,\sqrt{2x^2-3}=4\left(x\le-\dfrac{\sqrt{6}}{2};\dfrac{\sqrt{6}}{2}\le x\right)\\ \Leftrightarrow2x^2-3=16\\ \Leftrightarrow x^2=\dfrac{19}{2}\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{19}{2}}\left(tm\right)\\x=-\sqrt{\dfrac{19}{2}}\left(tm\right)\end{matrix}\right.\)

Nguyễn Hoàng Minh
17 tháng 9 2021 lúc 11:02

\(1,\\ A=\sqrt{5+4x}+\sqrt{7-3x}\\ ĐKXĐ:\left\{{}\begin{matrix}5+4x\ge0\\7-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{5}{4}\\x\le\dfrac{7}{3}\end{matrix}\right.\)

 

Lấp La Lấp Lánh
17 tháng 9 2021 lúc 11:09

Bài 2:

a) \(\sqrt{4x-4}+\sqrt{9x-9}-\sqrt{25x-25}=7\left(đk:x\ge1\right)\)

\(\Leftrightarrow2\sqrt{x-1}+3\sqrt{x-2}-5\sqrt{x-1}=7\)

\(\Leftrightarrow0=7\left(VLý\right)\)

Vậy \(S=\varnothing\)

b) \(\sqrt{2x^2-3}=4\left(đk:-\sqrt{\dfrac{3}{2}}\ge x\ge\sqrt{\dfrac{3}{2}}\right)\)

\(\Leftrightarrow2x^2-3=16\)

\(\Leftrightarrow2x^2=19\Leftrightarrow x^2=\dfrac{19}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{19}{2}}\left(tm\right)\\x=-\sqrt{\dfrac{19}{2}}\left(tm\right)\end{matrix}\right.\)

Dương Tịch
Xem chi tiết
Phạm Thị Thùy Linh
6 tháng 6 2019 lúc 20:48

\(b,\)\(\sqrt{\frac{2}{x^2}}\)

Căn thức xác định \(\Leftrightarrow\frac{2}{x^2}\)thỏa mãn đkxđ

\(\Rightarrow x^2\ne0\)

\(\Rightarrow x\ne0\)

Kiệt Nguyễn
6 tháng 6 2019 lúc 20:50

a) \(\sqrt{\frac{-5}{x^2+6}}\)

Để biểu thức có nghĩa thì \(x^2+6< 0\)

Mà \(x^2\ge0\Rightarrow x^2+6\ge6\)(mâu thuẫn)

Vậy biểu thức này không xác định

Kiệt Nguyễn
6 tháng 6 2019 lúc 20:51

c) \(\sqrt{\frac{1}{-1+x}}\)

Để biểu thức xác định thì \(-1+x\ge1\)

\(\Leftrightarrow x\ge2\)

Vậy \(ĐKXĐ:x\ge2\)