1/ Tìm x để căn thức trên có nghĩa : căn -|3 - x|
Tìm x để các biêu thức sau có nghĩa a, căn x^2-16 b, căn 1 trên x-5 c, x trên x-2 + căn x-2
Tìm x để các biểu thức sau có nghĩa e, căn 2x-5 f, căn -3+6 g, căn x+4 trên -5 h, căn 7 trên 4-2x
e: ĐKXĐ: \(x\ge\dfrac{5}{2}\)
g: ĐKXĐ: \(x\le-4\)
TÌM x
A) căn (25x)^2=/-3/^2
Tìm điều kiện để các căn thức có nghĩa
A) căn (-3/x+2)
B)căn (-3/1+x^2)
tìm x để căn thức sau có nghĩa căn -5/x^2+2 , -x^2+3
a: ĐKXĐ: \(x\in\varnothing\)
b: ĐKXĐ: \(-\sqrt{3}\le x\le\sqrt{3}\)
tìm điều kiện của x để căn thức sau có nghĩa
căn 2020 + căn -3 phần x+3
\(\sqrt{2020}+\sqrt{-\frac{3}{x+3}}\)
Căn thức trên có nghĩa khi:\(\hept{\begin{cases}x+3\ne0\\-\frac{3}{x+3}>0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-3\\x+3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-3\\x< -3\end{cases}}}}\)
\(\Rightarrow x< -3\)
Tìm điều kiện xác định để các biểu thức sau có nghĩa;
a,1/1-căn x^2-3
b,x-1/2-căn 3x+1
c,2/căn x^2-x+1
d,1/căn x- căn 2x-1
Tìm x để biểu thức sau có nghĩa:
a, căn x2-2x+1
b, căn x+3 + căn x+9
c, căn x-1/x+2
d, căn x-2 + 1/x-5
(phần này dấu căn chỉ đến x-2 thôi nhé)
\(a,\)\(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}\)
\(đkxđ\Leftrightarrow\sqrt{\left(x-1\right)^2}\ge0\)
\(\Rightarrow x-1\ge0\Rightarrow x\ge1\)
\(b,\)\(\sqrt{x+3}+\sqrt{x+9}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x+3\ge0\\x+9\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-3\\x\ge-9\end{cases}}}\)
\(\Rightarrow x\ge-3\)
\(c,\)\(\sqrt{\frac{x-1}{x+2}}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x+2\ne0\\\frac{x-1}{x+2}\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ne-2\\\frac{x-1}{x+2}\ge0\end{cases}}}\)
\(\frac{x-1}{x+2}\ge0\)\(\Rightarrow\orbr{\begin{cases}x-1\ge0;x+2>0\\x-1\le0;x+2< 0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ge-1;x>-2\\x\le1;x< 2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ge-1\\x< 2\end{cases}}\)
Vậy căn thức xác định khi x \(\ge\)-1 hoawck x < 2
\(d,\)\(\sqrt{x-2}-\frac{1}{x-5}\)
\(đkxđ\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}xđ\\\frac{1}{x-5}xđ\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-2\ge0\\x-5\ne0\end{cases}\Rightarrow\orbr{\begin{cases}x\ge2\\x\ne5\end{cases}}}\)
Vậy biểu thức xác định \(\Leftrightarrow x\ge2\)và \(x\ne5\)
Bài 1. Tìm điệu kiện của x để biểu thức A= căn 5+4x +căn 7-3x có nghĩa
Bài 2 Tìm x thỏa mãn:
a) căn 4x-4 +căn 9x-9- căn 25x-25 =7
b)căn 2x^2-3 =4 rất mong mọi người giúp đỡ ạ
\(2,\\ a,\sqrt{4x-4}+\sqrt{9x-9}-\sqrt{25x-25}=7\left(x\ge1\right)\\ \Leftrightarrow2\sqrt{x-1}+3\sqrt{x-1}-5\sqrt{x-1}=7\\ \Leftrightarrow0\sqrt{x-1}=7\Leftrightarrow x\in\varnothing\\ b,\sqrt{2x^2-3}=4\left(x\le-\dfrac{\sqrt{6}}{2};\dfrac{\sqrt{6}}{2}\le x\right)\\ \Leftrightarrow2x^2-3=16\\ \Leftrightarrow x^2=\dfrac{19}{2}\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{19}{2}}\left(tm\right)\\x=-\sqrt{\dfrac{19}{2}}\left(tm\right)\end{matrix}\right.\)
\(1,\\ A=\sqrt{5+4x}+\sqrt{7-3x}\\ ĐKXĐ:\left\{{}\begin{matrix}5+4x\ge0\\7-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{5}{4}\\x\le\dfrac{7}{3}\end{matrix}\right.\)
Bài 2:
a) \(\sqrt{4x-4}+\sqrt{9x-9}-\sqrt{25x-25}=7\left(đk:x\ge1\right)\)
\(\Leftrightarrow2\sqrt{x-1}+3\sqrt{x-2}-5\sqrt{x-1}=7\)
\(\Leftrightarrow0=7\left(VLý\right)\)
Vậy \(S=\varnothing\)
b) \(\sqrt{2x^2-3}=4\left(đk:-\sqrt{\dfrac{3}{2}}\ge x\ge\sqrt{\dfrac{3}{2}}\right)\)
\(\Leftrightarrow2x^2-3=16\)
\(\Leftrightarrow2x^2=19\Leftrightarrow x^2=\dfrac{19}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{19}{2}}\left(tm\right)\\x=-\sqrt{\dfrac{19}{2}}\left(tm\right)\end{matrix}\right.\)
Tìm X để biểu thức sau có nghĩa:
a, Căn -5/x2+6
b, Căn 2/x2
c, Căn 1/-1+x
d, Căn 4/x+3
\(b,\)\(\sqrt{\frac{2}{x^2}}\)
Căn thức xác định \(\Leftrightarrow\frac{2}{x^2}\)thỏa mãn đkxđ
\(\Rightarrow x^2\ne0\)
\(\Rightarrow x\ne0\)
a) \(\sqrt{\frac{-5}{x^2+6}}\)
Để biểu thức có nghĩa thì \(x^2+6< 0\)
Mà \(x^2\ge0\Rightarrow x^2+6\ge6\)(mâu thuẫn)
Vậy biểu thức này không xác định
c) \(\sqrt{\frac{1}{-1+x}}\)
Để biểu thức xác định thì \(-1+x\ge1\)
\(\Leftrightarrow x\ge2\)
Vậy \(ĐKXĐ:x\ge2\)