Chứng tỏ rằng : ( 2n + 20 ) chia hết cho (n+3)
Chứng tỏ rằng: ( 2n + 20 ) chia hết cho (2n + 3)
Vời $n=2$ thì $2n+20=24$ còn $2n+3=7$.
$24$ không chia hết cho $7$ nên đề sai. Bạn xem lại.
Chứng tỏ rằng: ( 2n + 20 ) chia hết cho (2n + 3)
Help me !!!!!!!!!!!!
1.Tìm n \(\in\) N, biết:
a) 3n-1 chia hết cho 3-2n
b) 3n+1 chia hết cho 11-2n
2. a) Chứng tỏ rằng tích 2 số tự nhiên liên tiếp chia hết cho 2
b) Chứng tỏ rằng tích 3 số tự nhiên liên tiếp chia hết cho 6
c) Chứng tỏ rằng tích 2 số tự nhiên liên tiếp chia hết cho 8
\(2n+3=2\left(n+1\right)+1\)chia hết cho \(n+1\)
\(\Leftrightarrow1⋮\left(n+1\right)\)
mà \(n\)là số tự nhiên nên \(n+1\inƯ\left(1\right)=\left\{-1,1\right\}\)
\(\Leftrightarrow n\in\left\{-2,0\right\}\)
mà \(n\)là số tự nhiên nên \(n=0\).
bài 1 tìm số tự nhien x sao cho
x \(\in\) Ư ( 54 )và 3 <x < 20
x \(\in\) B (7 ) và 30 < x <50
bài 2 chứng tỏ rằng aaabbb chia hết cho 3
bài 3 tìm x \(\in\) N sao cho
a,2n + 9 chia hết cho 3n
20 chia hết cho ( 2n - 3 )
c , ( 2n +4 ) chia hết cho ( 2n +1 )
d, ( n + 5 ) chia nết cho ( n + 1 )
bài 4 chứng minh rằng tổng 4 số tự nhiên liên tiếp ko chia hết cho 4
câu 1:102009=100...000(2008 chữ số 0)
=102009+8=100...008(2007 chữ số 0)
mà 1+0+0+...+0+0+8 có tổng các chữ số bằng 9 nên 102009+8 chia hết cho 9
=>102009+8 chia hết cho 9
Nếu đúng thì tick mk nhé!
1 Chứng tỏ rằng
a ) 10 ^21 +20 chia hết cho 6
b) 10^2015 +8 chia hết cho 18
2 Chứng tỏ rằng vs mọi số tự nhiên n thì ( n +n ) . ( n + 12 ) chia hết cho 2
3 Chứng tỏ rằng tính các ba số chẵn liên tiếp chia hết cho 48
Câu 1:
Ta có:102009=1000....00000000
2009 chữ số 0
Mà 10000....00000000 có tổng các chữ số bằng 1
1+8=9 chia hết cho 9
Vậy 102009+8 chia hết cho 9
Câu 2:
Ta có:(2n+3) là số lẻ vì 2n luôn là số chẵn còn 3 luôn là số lẻ
Mà số chẵn cộng với số lẻ thì được số lẻ(1)
Ta có:20 chia hết cho 1,2,4,5,10,20
Mà trong đó chỉ có 5 là số lẻ(2)
Từ (1) và (2) =>2n+3=5
2n =5-3
2n =2
n =1
1+0+0+.......+0+1+7=9 chia hết cho 9
Vậy 10^2019+17 chia hết cho 9
1+0+0+.......+0+8 =9 chia hết cho 9
Vậy 10^2009+8 chia hết cho 9
Chứng tỏ rằng ( với n thuộc N )
( 2n + 2 ).( 2n + 4 ) chia hết cho 8
( 2n + 2 ).( 2n + 4 ) chia hết cho 8
Chứng tỏ rằng vì :
Ta thấy n phải là số chẵn mà 2n + 2 đã là số chẵn
2n + 4 đã là số chẵn vì \(⋮\) cho 2
Nên chứng tỏ:
\(n+\left(2.4\right)⋮8\)
=> n + 8 chia hết cho 8
=> ( 2n + 2 ).( 2n + 4 ) chia hết cho 8
Ta có : ( 2n + 2 ).( 2n + 4 )
\(\Rightarrow\) 4n2 + 4n + 8n + 8
Vì 8n \(⋮\)8 ; 8\(⋮\)8 ; 4n thuộc ước của 8
\(\Rightarrow\)4n2 + 4n + 8n + 8 \(⋮\)8
\(\Rightarrow\)( 2n + 2 )( 2n + 4 ) chia hết cho 8