Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tuấn Kiệt Nông
Xem chi tiết
Akai Haruma
24 tháng 9 2023 lúc 17:33

Lời giải:

Vì $ABC$ cân tại $A$ nên đường cao $AH$ đồng thời là đường trung tuyến. Hay $H$ là trung điểm $BC$.

Xét tam giác $IHK$ và $HCK$ có:

$\widehat{IHK}=\widehat{HCK}$ (cùng phụ $\widehat{KHC}$)

$\widehat{IKH}=\widehat{HKC}=90^0$

$\Rightarrow \triangle IHK\sim \triangle HCK$ (g.g)

$\Rightarrow \frac{IH}{HK}=\frac{HC}{CK}$

$\Rightarrow \frac{2IH}{HK}=\frac{2HC}{CK}$

$\Rightarrow \frac{AH}{HK}=\frac{BC}{CK}$

Xét tam giác $BKC$ và $AKH$ có:

$\widehat{BCK}=\widehat{AHK}$ (cùng phụ với góc $\widehat{KHC}$)

$\frac{BC}{KC}=\frac{AH}{HK}$ (cmt)

$\Rightarrow \triangle BKC\sim \triangle AKH$ (c.g.c)

$\Rightarrow \widehat{BKC}=\widehat{AKH}$

$\Rightarrow \widehat{K_2}+90^0=\widehat{K_1}+90^0$
$\Rightarrow \widehat{K_2}=\widehat{K_1}$

$\Rightarrow \widehat{K_2}+\widehat{K_3}=\widehat{K_1}+\widehat{K_3}$

$\Rightarrow \widehat{IKH}=\widehat{AKB}$

Hay $90^0=\widehat{AKB}$

Akai Haruma
24 tháng 9 2023 lúc 17:36

Hình vẽ:

Mèo Méo
Xem chi tiết
khang
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 12 2021 lúc 11:09

a: Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)

Do đó: ADHE là hình chữ nhật

hay AH=DE

đạt đạt
Xem chi tiết
linh123456789
Xem chi tiết
o0o I am a studious pers...
29 tháng 6 2016 lúc 19:41

Ta có : DM = MC 

           DI = IH 

=> MI là đường trung bình của tam giác vuông MCH

=> MI // HC

Do HC vuông vs AH => MI vuông vs AH ( đpcm )

khang
Xem chi tiết
Nguyễn Hoàng Minh
1 tháng 12 2021 lúc 11:19

\(a,\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\\ \Rightarrow AEHD\text{ là hcn}\\ \Rightarrow AH=DE\\ b,DI\text{ là tt ứng cạnh huyền }BH\Rightarrow DI=IH\Rightarrow\widehat{IDH}=\widehat{IHD}\\ \text{Mà }AEHD\text{ là hcn }\Rightarrow\widehat{EDH}=\widehat{AHD}\\ \Rightarrow\widehat{IDE}=\widehat{IDH}+\widehat{EDH}=\widehat{IHD}+\widehat{AHD}=\widehat{IHA}=90^0\\ \Rightarrow DI\perp DE\left(1\right)\\ EK\text{ là tt ứng cạnh huyền }CH\Rightarrow EK=KH\Rightarrow\widehat{KEH}=\widehat{KHE}\\ \text{Mà }AEHD\text{ là hcn }\Rightarrow\widehat{AHE}=\widehat{DEH}\\ \Rightarrow\widehat{DEK}=\widehat{DEH}+\widehat{HEK}=\widehat{AHE}+\widehat{KHE}=\widehat{AHK}=90^0\\ \Rightarrow EK\perp DE\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow DI\text{//}EK\)

Nguyễn Hiền Lương
Xem chi tiết
Nguyễn Ngọc Minh Hương
Xem chi tiết
Văn Đức Kiên
15 tháng 10 2016 lúc 20:40

online math cho 0 diem di

Dung Kieutri
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 12 2023 lúc 23:06

a: ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

Xét ΔCAB có

H,K lần lượt là trung điểm của CB,CA

=>HK là đường trung bình của ΔCAB

=>HK//AB và \(HK=\dfrac{AB}{2}\)

Xét tứ giác AKHB có KH//AB

nên AKHB là hình thang

b: Ta có: AD\(\perp\)AH

BC\(\perp\)AH

Do đó: AD/BC

=>AD//BH

Xét tứ giác ADHB có

AD//HB

AB//HD

Do đó: ADHB là hình bình hành