K=1/50+1/51+1/52+.......+1/91.Chứng tỏ 1/2<K<1
Chứng tỏ rằng
a, 1*3*5*...*99=(51/2)*(52/2)* ... * (100/2)
b, 1-1/2+1/3-1/4+...-1/1990=1/996+1/997+...91/1990
Chứng tỏ rằng S > 1/2
S=1/50+1/51+1/52+...+1/99
Ta ó: \(\frac{1}{50}>\frac{1}{100};\frac{1}{51}>\frac{1}{100};\frac{1}{52}>\frac{1}{100};....;\frac{1}{99}>\frac{1}{100}\)
\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\left(50so\right)=\frac{50}{100}=\frac{1}{2}\)
Vậy...
Ta có :
Tất cả các số hạng của tổng đều lớn hơn \(\frac{1}{100}\), mà tổng có 50 số hạng
=> S > \(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)( có 50 số 1/100 )
=> S > \(\frac{50}{100}\)= \(\frac{1}{2}\)
Vậy S > 1/2
Cho tổng S = 1/50 + 1/51 + 1/52 + ... + 1/98 + 1/99. Chứng tỏ S > 1/2
Tổng S có 50 phân số
=> S > 1/100 + 1/100 + 1/100 +...+ 1/100 (50 phân số) => S > 1/2.
Vậy S > 1/2
Tổng S có 50 phân số
=> S > 1/100 + 1/100 + 1/100 +...+ 1/100 (50 phân số) => S > 1/2.
Vậy S > 1/2
Cho tổng S = 1/50 + 1/51 + 1/52 + ... + 1/98 + 1/99. Chứng tỏ S > 1/2
\(S=\left(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{74}\right)+\left(\frac{1}{75}+\frac{1}{76}+...+\frac{1}{99}\right)\)
Có: \(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{74}>\frac{1}{75}+\frac{1}{75}+...+\frac{1}{75}=\frac{25}{75}=\frac{1}{3}\)
\(\frac{1}{75}+\frac{1}{76}+...+\frac{1}{99}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{25}{100}=\frac{1}{4}\)
=> \(S>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)=> đpcm
Cho S=1/50+1/51+1/52+...+1/98+1/99. Chứng tỏ rằng 1/2< S<1
Chứng tỏ rằng: 1/50 + 1/51 + 1/52 + 1/53 + ... + 1/98 + 1/99 > 1/2. ( giải thích rõ ràng, dễ hiểu).
Từ 50 đến 99 có 50 số; ta cho tất cả các phân số đó về 1/100; ta có 50/100 = 1/2; còn dư một số phần chênh giữa 1/100 va các phân số đó.
Cho S =\(\frac{1}{50}\)+\(\frac{1}{51 }\)+\(\frac{1}{52}\)+...+\(\frac{1}{98}\)+\(\frac{1}{99}\)
Chứng tỏ rằng S >\(\frac{1}{2}\)
DDODOGDOGE
Giải:
\(S=\dfrac{1}{50}+\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{98}+\dfrac{1}{99}\)
\(S=\left(\dfrac{1}{50}+\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{74}\right)+\left(\dfrac{1}{75}+...+\dfrac{1}{98}+\dfrac{1}{99}\right)\)
\(\Rightarrow S>\left(\dfrac{1}{50}+\dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}\right)+\left(\dfrac{1}{75}+...+\dfrac{1}{75}+\dfrac{1}{75}\right)\)
\(\Rightarrow S>\dfrac{1}{2}+\dfrac{1}{3}>\dfrac{1}{2}\)
\(\Rightarrow S>\dfrac{1}{2}\left(đpcm\right)\)
Ta có:S=1/50+1/51+1/52+...+1/99
S>1/50+1/50+1/50+....+1/50(50 số hạng)
S>1/50x50
S>1>1/2
=>S>1/2
Chứng tỏ rằng tổng của các phân số sau đây lớn hơn 1 phần 2
S=1/50+1/51+1/52+...+1/99
ta có 1/50>1/100
1/51>1/100
..........
1/99>1/100
vậy S>1/100*50=1/2
suy ra S>1/2
Hãy chứng tỏ rằng tổng các phân số sau đây lớn hơn 1/2:
S= 1/50 + 1/51 + 1/52 + ... + 1/98 + 1/99.
Ta có S = \(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{74}+\frac{1}{75}+\frac{1}{76}+\frac{1}{77}+...+\frac{1}{99}\)
\(=\left(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{74}\right)+\left(\frac{1}{75}+\frac{1}{76}+\frac{1}{77}+...+\frac{1}{99}\right)\)
25 số hạng 25 số hạng
\(>\left(\frac{1}{75}+\frac{1}{75}+...+\frac{1}{75}\right)+\left(\frac{1}{100}+\frac{1}{100}+....+\frac{1}{100}\right)\)
\(=25.\frac{1}{75}+25.\frac{1}{100}=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)(ĐPCM)
Vậy S > 1/2