Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vô danh
Xem chi tiết
Trần Danh Tùng
1 tháng 10 lúc 20:19
1. Gom nhóm và sắp xếp lại

\(A = - x^{2} - 2 y^{2} + 2 x y + 2 x - 4 y + 100\)

Nhóm thành:

\(A = - \left(\right. x^{2} - 2 x y + 2 y^{2} \left.\right) + 2 x - 4 y + 100\)

2. Nhận dạng hằng đẳng thức

\(x^{2} - 2 x y + 2 y^{2} = \left(\right. x - y \left.\right)^{2} + y^{2}\)

Suy ra:

\(A = - \left(\right. \left(\right. x - y \left.\right)^{2} + y^{2} \left.\right) + 2 x - 4 y + 100\) \(A = - \left(\right. x - y \left.\right)^{2} - y^{2} + 2 x - 4 y + 100\)

3. Đặt ẩn phụ

Đặt \(u = x - y \textrm{ }\textrm{ } \Rightarrow \textrm{ }\textrm{ } x = u + y\).

Thay vào:

\(A = - u^{2} - y^{2} + 2 \left(\right. u + y \left.\right) - 4 y + 100\) \(A = - u^{2} - y^{2} + 2 u + 2 y - 4 y + 100\) \(A = - u^{2} - y^{2} + 2 u - 2 y + 100\)

4. Phân tích theo từng biến

\(A \left(\right. u , y \left.\right) = - \left(\right. u^{2} - 2 u \left.\right) - \left(\right. y^{2} + 2 y \left.\right) + 100\) \(= - \left(\right. u^{2} - 2 u + 1 \left.\right) + 1 - \left(\right. y^{2} + 2 y + 1 \left.\right) + 1 + 100\) \(= - \left(\right. u - 1 \left.\right)^{2} - \left(\right. y + 1 \left.\right)^{2} + 102\)

5. Tìm giá trị lớn nhất\(- \left(\right. u - 1 \left.\right)^{2} \leq 0\)\(- \left(\right. y + 1 \left.\right)^{2} \leq 0\), nên giá trị lớn nhất đạt được khi

\(u - 1 = 0 \text{v} \overset{ˋ}{\text{a}} y + 1 = 0\)

Tức là \(u = 1 , y = - 1\).

Khi đó:

Amax⁡=102A_{\max} = 102Amax​=102

Đáp số:

Amax⁡=102A_{\max} = 102Amax​=102

(Đạt được khi \(x = u + y = 1 + \left(\right. - 1 \left.\right) = 0 , \textrm{ }\textrm{ } y = - 1\))

Hoàng Phạm
Xem chi tiết
Pham Van Hung
29 tháng 7 2018 lúc 8:32

a, = x^2 -2xy +y^2 +(x^2-2x+1)+2

    = (x-y)^2 + (x-1)^2 + 2

GTNN bằng 2 khi: x-y=0 và x-1=0

Suy ra: x = y = 1

Vậy GTNN của biểu thức trên là: 2 tại x=y=1

b, = -x^2 -y^2 -1 + 2xy -2x +2y - y^2 + 8y - 16 + 17

    = -(x^2 +y^2+1-2xy+2x-2y)-(y^2 -8y+16)+17

    = -(x-y+1)^2 -(y-4)^2 +17

GTLN bằng 17 khi: x-y+1 =0 và y-4=0

                                   x-4+1=0 và y=4

                                   x=3 và y=4

Vậy GTLN của biểu thức là 17 tại x=3,y=4.

Chúc bạn học tốt.

vô danh
Xem chi tiết
Đào Anh Quang
1 tháng 10 lúc 19:59


Nguyễn Hải Đăng
1 tháng 10 lúc 20:18

QWERTY huhu


Công Mạnh Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 8 2022 lúc 23:01

Bài 2: 

a: \(=-\left(x^2+2x-100\right)\)

\(=-\left(x^2+2x+1-101\right)\)

\(=-\left(x+1\right)^2+101< =101\)

Dấu = xảy ra khi x=-1

b: \(=-3\left(x^2-\dfrac{1}{3}x\right)\)

\(=-3\left(x^2-2\cdot x\cdot\dfrac{1}{6}+\dfrac{1}{36}-\dfrac{1}{36}\right)\)

\(=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{1}{12}< =\dfrac{1}{12}\)

Dấu = xảy ra khi x=1/6

c: \(=-\left(3x^2+4y^2-18x+8y-12\right)\)

\(=-\left(3x^2-18x+27+4y^2+8y+4-43\right)\)

\(=-3\left(x-3\right)^2-4\left(y+1\right)^2+43< =43\)

Dấu = xảy ra khi x=3 và y=-1

Vũ Đình Đức
Xem chi tiết
Bạc Violet
Xem chi tiết
Edogawa Conan
Xem chi tiết
๖ۣۜNɦσƙ ๖ۣۜTì
13 tháng 7 2019 lúc 16:00

\(1.\)

\(a;A=-2x^2+4x-18\)

\(A=-2\left(x^2-4x+18\right)\)

\(A=-2\left(x^2-2.x.2+4+14\right)\)

\(A=-2\left(x-2\right)^2-14\le-14\)

Dấu = xảy ra khi : \(x-2=0\)

                              \(\Rightarrow x=2\)

Vậy Amax =-14 tại x = 2

Các câu còn lại lm tương tự........

Edogawa Conan
Xem chi tiết
trongnghia
14 tháng 7 2019 lúc 9:33

\(a-2x^2+4x-18\)

=-[(2x2-2x.2+4)+14]

=-[(2x-2)2+14]

=-(2x-2)2-14

Vì -(2x-2)2 bé hơn hoặc bằng 0 với mọi x nên -(2x-2)2-14 bé hơn hoặc bằng -14

Dấu "=" xảy ra khi x=1 

Vậy GTLN là -14 tại x=1

Mấy bài khác tương tự nha bạn. Áp dụng hằng đẳng thức và trình bày như thế

bài 2 xem lại cách ra đề nha bạn

phan thị thu nguyên
Xem chi tiết