Tìm gtln B= 100-x^2-y^2-2x-2y-2xy
Tìm GTLN của:A=-x^2-2y^2+2xy+2x-4y+100
\(A = - x^{2} - 2 y^{2} + 2 x y + 2 x - 4 y + 100\)
Nhóm thành:
\(A = - \left(\right. x^{2} - 2 x y + 2 y^{2} \left.\right) + 2 x - 4 y + 100\)
2. Nhận dạng hằng đẳng thức\(x^{2} - 2 x y + 2 y^{2} = \left(\right. x - y \left.\right)^{2} + y^{2}\)
Suy ra:
\(A = - \left(\right. \left(\right. x - y \left.\right)^{2} + y^{2} \left.\right) + 2 x - 4 y + 100\) \(A = - \left(\right. x - y \left.\right)^{2} - y^{2} + 2 x - 4 y + 100\)
3. Đặt ẩn phụĐặt \(u = x - y \textrm{ }\textrm{ } \Rightarrow \textrm{ }\textrm{ } x = u + y\).
Thay vào:
\(A = - u^{2} - y^{2} + 2 \left(\right. u + y \left.\right) - 4 y + 100\) \(A = - u^{2} - y^{2} + 2 u + 2 y - 4 y + 100\) \(A = - u^{2} - y^{2} + 2 u - 2 y + 100\)
4. Phân tích theo từng biến\(A \left(\right. u , y \left.\right) = - \left(\right. u^{2} - 2 u \left.\right) - \left(\right. y^{2} + 2 y \left.\right) + 100\) \(= - \left(\right. u^{2} - 2 u + 1 \left.\right) + 1 - \left(\right. y^{2} + 2 y + 1 \left.\right) + 1 + 100\) \(= - \left(\right. u - 1 \left.\right)^{2} - \left(\right. y + 1 \left.\right)^{2} + 102\)
5. Tìm giá trị lớn nhấtVì \(- \left(\right. u - 1 \left.\right)^{2} \leq 0\) và \(- \left(\right. y + 1 \left.\right)^{2} \leq 0\), nên giá trị lớn nhất đạt được khi\(u - 1 = 0 \text{v} \overset{ˋ}{\text{a}} y + 1 = 0\)
Tức là \(u = 1 , y = - 1\).
Khi đó:Amax=102A_{\max} = 102Amax=102
✅ Đáp số:
Amax=102A_{\max} = 102Amax=102
(Đạt được khi \(x = u + y = 1 + \left(\right. - 1 \left.\right) = 0 , \textrm{ }\textrm{ } y = - 1\))
Tìm GTLN hoặc GTNN
2x^2+y^2-2xy-2x+3
2xy+10y-x^2-2y^2-2x
a, = x^2 -2xy +y^2 +(x^2-2x+1)+2
= (x-y)^2 + (x-1)^2 + 2
GTNN bằng 2 khi: x-y=0 và x-1=0
Suy ra: x = y = 1
Vậy GTNN của biểu thức trên là: 2 tại x=y=1
b, = -x^2 -y^2 -1 + 2xy -2x +2y - y^2 + 8y - 16 + 17
= -(x^2 +y^2+1-2xy+2x-2y)-(y^2 -8y+16)+17
= -(x-y+1)^2 -(y-4)^2 +17
GTLN bằng 17 khi: x-y+1 =0 và y-4=0
x-4+1=0 và y=4
x=3 và y=4
Vậy GTLN của biểu thức là 17 tại x=3,y=4.
Chúc bạn học tốt.
tìm GTLN của: A=-x^2-y^2+2xy+2x-2y+20
Tìm GTNN của các biểu thức
D=x2+2y+2y2-2xy+2010
E= 2x2+y2-2xy-2y+12
F=x2+2y2-2xy+2x-6y+2018
Tìm GTLN của biểu thức
A=100-2x-x2
B=-3x2+x
C=12-3x2-4y2+18x-8y
Bài 2:
a: \(=-\left(x^2+2x-100\right)\)
\(=-\left(x^2+2x+1-101\right)\)
\(=-\left(x+1\right)^2+101< =101\)
Dấu = xảy ra khi x=-1
b: \(=-3\left(x^2-\dfrac{1}{3}x\right)\)
\(=-3\left(x^2-2\cdot x\cdot\dfrac{1}{6}+\dfrac{1}{36}-\dfrac{1}{36}\right)\)
\(=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{1}{12}< =\dfrac{1}{12}\)
Dấu = xảy ra khi x=1/6
c: \(=-\left(3x^2+4y^2-18x+8y-12\right)\)
\(=-\left(3x^2-18x+27+4y^2+8y+4-43\right)\)
\(=-3\left(x-3\right)^2-4\left(y+1\right)^2+43< =43\)
Dấu = xảy ra khi x=3 và y=-1
Cho x y thuộc Z thỏa mãn
`x^2`+ `2xy` + `7x` + `7y` + `2y^2` + `10` = `0`
tìm gtnn và gtln của S= 2x+2y+2023
Tìm GTLN của
A= -x2 +2xy - 4y2 + 2x + 10y +5
B= -x2 - 2y2 -2xy + 2x - 2y -15
1.Tìm GTLN:
a)-2x^2+4x-18
b)-2x^2-12x+12
c)-2x^2+2xy-5y^2+4y+2x+1
2.Tìm x,y:
a)x^2-2x+4y^2+4y+2
b)4x^2-8x+y+2y
\(1.\)
\(a;A=-2x^2+4x-18\)
\(A=-2\left(x^2-4x+18\right)\)
\(A=-2\left(x^2-2.x.2+4+14\right)\)
\(A=-2\left(x-2\right)^2-14\le-14\)
Dấu = xảy ra khi : \(x-2=0\)
\(\Rightarrow x=2\)
Vậy Amax =-14 tại x = 2
Các câu còn lại lm tương tự........
1.Tìm GTLN:
a)-2x^2+4x-18
b)-2x^2-12x+12
c)-2x^2+2xy-5y^2+4y+2x+1
2.Tìm x,y:
a)x^2-2x+4y^2+4y+2
b)4x^2-8x+y+2y
\(a-2x^2+4x-18\)
=-[(2x2-2x.2+4)+14]
=-[(2x-2)2+14]
=-(2x-2)2-14
Vì -(2x-2)2 bé hơn hoặc bằng 0 với mọi x nên -(2x-2)2-14 bé hơn hoặc bằng -14
Dấu "=" xảy ra khi x=1
Vậy GTLN là -14 tại x=1
Mấy bài khác tương tự nha bạn. Áp dụng hằng đẳng thức và trình bày như thế
bài 2 xem lại cách ra đề nha bạn
1>Tìm GTNN của b thức
A=2x2+2xy+y2-2x+2y+2
B=x2+xy+y2-3x-3y
2> Tìm GTLN của b thức
C=-x2+2xy-4y2+2x+10y+5
D=-x2-2y2-2xy+2x-2y-15
bạn nào giải đc câu nào thì cmt nhé ^^ ko cần phải giải hết đâu ạ :)) mình mơn ạ <3