Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen ngoc linh
Xem chi tiết
Nguyễn Văn Huy
6 tháng 11 2016 lúc 21:39

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

=>a=b.k

c=d.k

ta có Vế Phải : \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(b.k\right)^2+b^2}{\left(d.k\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}\)

Vế Trái :\(\frac{ab}{cd}=\frac{b.k.b}{d.k.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}\)

\(\frac{b^2}{d^2}=\frac{b^2}{d^2}\)

=>VP=VT

=>\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

Học Giỏi Đẹp Trai
29 tháng 11 2016 lúc 15:52

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

=> a=b.k; c=d.k

Suy ra:

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(b.k\right)^2+b^2}{\left(d.k\right)^2+d^2}=\frac{b^2}{d^2}\) (1)

\(\frac{ab}{cd}=\frac{b.k.b}{d.k.d}=\frac{b^2}{d^2}\) (2)

Từ (1) và (2) => \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

Chúc bạn học tốt!

Nguyễn Văn Huy
6 tháng 11 2016 lúc 21:39

"." là nhân nha

Tuyển Nguyễn Đình
Xem chi tiết
Kaito Kid
16 tháng 1 2020 lúc 20:50

bài 1 sai đề ko bạn

Khách vãng lai đã xóa
Tuyển Nguyễn Đình
16 tháng 1 2020 lúc 20:56

đề nào và mình ghi sai thứ tự bài

Khách vãng lai đã xóa
Tuyển Nguyễn Đình
16 tháng 1 2020 lúc 21:00

bài 1 thiếu cho ở đàu

Khách vãng lai đã xóa
Học Tập
Xem chi tiết
Công chúa Lọ Lem
Xem chi tiết
leminhduc
17 tháng 7 2017 lúc 8:35

ta có :a/b=b/d =a+b/b+d => a/d=b/b=a+b/b+d

<=>a+b/b+d=a2+b2/b2+d2=a/d 

Nguyễn Quang Huy
17 tháng 7 2017 lúc 8:39

\(\frac{a}{b}\)=\(\frac{b}{d}\)=> \(\frac{ab}{bd}\)\(\frac{a^2}{b^2}\)=\(\frac{b^2}{d^2}\)=> \(\frac{a}{d}\)=\(\frac{a^2+b^2}{b^2+d^2}\)=> dpcm

Nguyễn Việt Hoàng
18 tháng 10 2019 lúc 22:07

Ta có : \(\frac{a}{b}=\frac{b}{d}\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{d^2}\)

Áp dụng  TC của dãy tỉ số bằng nhau , ta có : 

\(\frac{a^2}{b^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{b^2+d^2}=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{d}=\frac{a}{d}\)

Khách vãng lai đã xóa
Quách Phú Đạt
Xem chi tiết
Kuro Kazuya
12 tháng 2 2017 lúc 15:57

Xét: \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+d^2}+\frac{d^3}{d^2+a^2}\)

\(\Leftrightarrow a-\frac{ab^2}{a^2+b^2}+b-\frac{bc^2}{b^2+c^2}+c-\frac{cd^2}{c^2+d^2}+d-\frac{da^2}{d^2+a^2}\)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\left\{\begin{matrix}a^2+b^2\ge2\sqrt{a^2b^2}=2ab\\b^2+c^2\ge2\sqrt{b^2c^2}=2bc\\c^2+d^2\ge2\sqrt{c^2d^2}=2cd\\d^2+a^2\ge2\sqrt{d^2a^2}=2da\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\frac{ab^2}{a^2+b^2}\le\frac{ab^2}{2ab}=\frac{b}{2}\\\frac{bc^2}{b^2+c^2}\le\frac{bc^2}{2bc}=\frac{c}{2}\\\frac{cd^2}{c^2+d^2}\le\frac{cd^2}{2cd}=\frac{d}{2}\\\frac{da^2}{d^2+a^2}\le\frac{da^2}{2da}=\frac{a}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}a-\frac{ab^2}{a^2+b^2}\ge a-\frac{b}{2}\\b-\frac{bc^2}{b^2+c^2}\ge b-\frac{c}{2}\\c-\frac{cd^2}{c^2+d^2}\ge c-\frac{d}{2}\\d-\frac{da^2}{d^2+a^2}\ge d-\frac{a}{2}\end{matrix}\right.\)

\(\Rightarrow a-\frac{ab^2}{a^2+b^2}+b-\frac{bc^2}{b^2+c^2}+c-\frac{cd^2}{c^2+d^2}+d-\frac{da^2}{d^2+a^2}\ge a+b+c+d-\frac{a}{2}-\frac{b}{2}-\frac{c}{2}-\frac{d}{2}\)

\(\Rightarrow a-\frac{ab^2}{a^2+b^2}+b-\frac{bc^2}{b^2+c^2}+c-\frac{cd^2}{c^2+d^2}+d-\frac{da^2}{d^2+a^2}\ge\frac{a+b+c+d}{2}\)

\(\Leftrightarrow\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+d^2}+\frac{d^3}{d^2+a^2}\ge\frac{a+b+c+d}{2}\) ( đpcm )

Nguyễn Quang Định
12 tháng 2 2017 lúc 16:24

Cách của bạn Minh dài quá mình xin làm cách ngắn hơn:

Đầu tiên ta chứng minh bổ đề:

\(\frac{x^3}{x^2+y^2}\ge\frac{2x-y}{2}\)

\(\Leftrightarrow2x^3-\left(x^2+y^2\right)\left(2x-y\right)\ge0\)

\(\Leftrightarrow y\left(y-x\right)^2\ge0\)(đúng)

Từ đó ta có: \(\left\{\begin{matrix}\frac{a^3}{a^2+b^2}\ge\frac{2a-b}{2}\\\frac{b^3}{b^2+c^2}\ge\frac{2b-c}{2}\\\frac{c^3}{c^2+d^2}\ge\frac{2c-d}{2}\\\frac{d^3}{d^2+a^2}\ge\frac{2d-a}{2}\end{matrix}\right.\)

Cộng 4 cái trên vế theo vế ta được

\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+d^2}+\frac{d^3}{d^2+a^2}\ge\frac{2a-b}{2}+\frac{2b-c}{2}+\frac{2c-d}{2}+\frac{2d-a}{2}=\frac{a+b+c+d}{2}\)

Ngô Văn Tuyên
Xem chi tiết
Thái Viết Nam
Xem chi tiết
Vongola Tsuna
5 tháng 11 2016 lúc 21:12

đặt \(\frac{a}{b}=\frac{c}{d}=k\)=> a=bk c=dk 

ta có : \(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)(1)

\(\frac{ab}{cd}=\frac{b.k.b}{d.k.d}=\frac{b^2}{d^2}\)(2)

từ (1:2) => \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

Hung Hung
5 tháng 11 2016 lúc 21:25

Cái này dựa trên mạng dác dặt bút làm lắm nha

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=b.k;c=d.k\)

Ta có \(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{kb^2}{kd^2}=\frac{b^2}{d^2}\left(1\right)\)

Ta lại có \(\frac{a^2+b^2}{c^2+d^2}=\frac{k^2.b^2+b^2}{k^2.d^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\left(2\right)\)

Từ \(\left(1\right)và\left(2\right)\)ta được

\(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)

Indra Sasuke
5 tháng 11 2016 lúc 21:26

\(\frac{a}{b}=\frac{c}{d}=>\frac{a^2}{b^2}=\frac{c^2}{d^2}\)\(=>\frac{a^2}{c^2}=\frac{b^2}{d^2}.\) .  .Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\).Xin lỗi mình chưa nghĩ ra tiếp

Phan Mạnh Tuấn
Xem chi tiết
Thắng Nguyễn
22 tháng 11 2016 lúc 23:34

Xét BĐT phụ  \(\frac{a^3}{a^2+b^2}\ge\frac{2a-b}{2}\)\(\Leftrightarrow b\left(a-b\right)^2\ge0\)

Tương tự ta có:

\(\frac{b^3}{b^2+c^2}\ge\frac{2b-c}{2};\frac{c^3}{c^2+d^2}\ge\frac{2c-d}{2};\frac{d^3}{d^2+a^2}\ge\frac{2d-a}{2}\)

Cộng lại theo vế ta có:

\(VT\ge\frac{2a-b}{2}+\frac{2b-c}{2}+\frac{2c-d}{2}+\frac{2d-a}{2}\)

\(=\frac{2a-b+2b-c+2c-d+2d-a}{2}=\frac{a+b+c+d}{2}\)

Vậy BĐT đc chứng minh

Thân Thùy Dương
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
17 tháng 7 2017 lúc 16:47

Ta có : \(\frac{a}{b}=\frac{b}{d}\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{b^2+d^2}\)

Mặt khác  \(\frac{a}{b}=\frac{b}{d}\) => ad = b2 

Thay  ad = b2 ta có : \(\frac{a^2+ad}{ad+d^2}=\frac{a\left(a+d\right)}{d\left(a+d\right)}=\frac{a}{d}\) (đpcm)

Trà My
17 tháng 7 2017 lúc 17:07

\(\frac{a}{b}=\frac{b}{d}\Rightarrow\frac{a}{b}.\frac{a}{b}=\frac{b}{d}.\frac{b}{d}=\frac{a}{b}.\frac{b}{d}\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{d^2}=\frac{a}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau: \(\frac{a^2}{b^2}=\frac{b^2}{d^2}=\frac{a}{d}=\frac{a^2+b^2}{b^2+d^2}\)

Vậy ta có đpcm