Hãy chứng tỏ rằng nếu lấy một số tự nhiên có hai chữ số chữ số hàng chục lớn hơn chữ số hàng đơn vị đi gồm 2 chữ số ấy viết theo thứ tự ngược lại ta được 1 số chia hết cho 9
chứng tỏ rằng nếu lấy 1 số tự nhiên có hai chữ số (chữ số hàng chục lớn hơn chữ số hàng đơn vị )trừ đi số gồm hai chữ số ấy viết theo thứ tự ngược lại ta được 1số chia hết cho 9
Gọi số tự nhiên có 2chữ số là: ab (a>b,a#0)
=>Số ngược lại của ab phải là :ba
Ta đi chứng tỏ rằng hiệu:
(ab-ba) chia hết cho 9
Để hiệu ab-ba chia hết cho 9 thì ab chia hết cho 9.và ba chia hết cho 9.
Trường hợp1:
ab chia hết cho 9 thì b=0;1;2;3;4
=>các số tương ứng của a=9;8;7;6;5
=>90;81;72;63;54 chia hết cho 9.
Trường hợp 2:
ba=09;18;27;36;45 chia hết cho 9.
=>Hiệu ab-ba chia hết cho 9.
Chứng tỏ rằng nếu lấy hai chữ số chữ số hàng chục lớn hơn chữ số hàng đơn vị trừ số gồm hai chữ số ấy viết theo thứ tự ngược lại ta được một số chia cho 9
Tìm số tự nhiên có hai chữ số, biết rằng ba lần chữ số hàng chục lớn hơn chữ số hàng đơn vị 13 đơn vị, và nếu viết hai chữ số ấy theo thứ tự ngược lại thì được một số mới (có hai chữ số) nhỏ hơn số cũ 9 đơn vị.
tui chịu mới lớp 4
Gọi chữ số hàng chục là x \(\left(0< x\le9\right)\)
chữ số hàng dơn vị là y \(\left(0\le y\le9\right)\)
Ta có ba lần chữ số hàng chục lớn hơn chữ số hàng đơn vị 13 đơn vị
\(\Rightarrow3x-y=13\left(1\right)\)
Nếu viết hai chữ số ấy theo thứ tự ngược lại thì được một số mới (có hai chữ số) nhỏ hơn số cũ 9 đơn vị.
\(\Rightarrow xy-yx=9\Leftrightarrow10x+y-10y-x=9\)
\(\Leftrightarrow9x-9y=9\)
\(\Leftrightarrow x-y=1\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình \(\hept{\begin{cases}3x-y=13\\x-y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x=12\\x-y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=6\left(TM\right)\\y=5\left(TM\right)\end{cases}}\)
Vậy số cần tìm là \(65\)
Học tốt
Tìm số tự nhiên có hai chữ số, biết rằng ba lần chữ số hàng chục nhỏ hơn chữ số hàng đơn vị 1 đơn vị, và nếu viết hai chữ số ấy theo thứ tự ngược lại thì được một số mới (có hai chữ số) lớn hơn số cũ 27 đơn vị.
Gọi số cần tìm là \(\overline{ab}\)(Điều kiện: \(\left\{{}\begin{matrix}a,b\in N\\0< a\le10\\0\le b\le10\end{matrix}\right.\))
Vì ba lần chữ số hàng chục lớn hơn chữ số hàng đơn vị là 6 đơn vị nên ta có phương trình: \(3a-b=6\)(1)
Vì khi viết hai chữ số ấy theo thứ tự ngược lại thì được một số mới lớn hơn số cũ là 36 đơn vị nên ta có phương trình: \(10b+a-\left(10a+b\right)=36\)
\(\Leftrightarrow10b+a-10a-b=36\)
\(\Leftrightarrow-9a+9b=36\)
\(\Leftrightarrow a-b=-4\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}3a-b=6\\a-b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a=10\\a-b=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5\\b=a+4=5+4=9\end{matrix}\right.\)(thỏa ĐK)
Vậy: Số cần tìm là 59
Tìm số tự nhiên có hai chữ số, biết rằng ba lần chữ số hàng chục lớn hơn chữ số hàng đơn vị 16 đơn vị, và nếu viết hai chữ số ấy theo thứ tự ngược lại thì được một số mới (có hai chữ số) nhỏ hơn số cũ 36 đơn vị.
Gọi số cần tìm là \(\overline{ab}\)
Theo đề bài
\(\overline{ab}-\overline{ba}=10.a+b-10.b-a=9.a-9.b=36\Rightarrow a-b=4\) (1)
Theo đề bài
\(3.a-b=16\) (2)
Từ (1) và (2) ta có hệ phương trình
\(\hept{\begin{cases}a-b=4\\3a-b=16\end{cases}\Rightarrow\hept{\begin{cases}a=6\\b=2\end{cases}}}\)
Tìm số tự nhiên có hai chữ số, biết rằng năm lần chữ số hàng chục lớn hơn chữ số hàng đơn vị 12 đơn vị, và nếu viết hai chữ số ấy theo thứ tự ngược lại thì được một số mới (có hai chữ số) lớn hơn số cũ 36 đơn vị.
Số đó là: .
gọi số cần tìm là \(\overline{xy}\)
ta có hệ
\(\hept{\begin{cases}5x-y=12\\\left(10y+x\right)-\left(10x+y\right)=36\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}5x-y=12\\-9x+9y=36\end{cases}=>\hept{\begin{cases}45x-9y=108\\-45x+45y=180\end{cases}=>\hept{\begin{cases}36y=288\\5x-y=12\end{cases}=>\hept{\begin{cases}y=8\\5x=20\end{cases}}}}}\)
\(\Rightarrow\hept{\begin{cases}y=8\\x=4\end{cases}}\)
zậy số cần tìm là 48
Bài tập 22. Nếu xen vào giữa các chữ số của một số có hai chữ số một số có hai chữ số kém
số đó 1 đơn vị thì sẽ được một số có bốn chữ số lớn gấp 91 lần so với số đầu tiên. Hãy tìm
số đó
Bài tập 23. Tìm số tự nhiên có hai chữ số, biết rằng số mới viết theo thứ tự ngược lại nhân
với số phải tìm thì được 3154; số nhỏ trong hai số thì lớn hơn tổng các chữ số của nó là 27
Bài tập 24. Cho số có hai chữ số . Nếu lấy số đó chia cho hiệu của chữ số hàng chục và hàng
đơn vị của nó thì được thương là 18 và dư 4 . Tìm số đã cho
Bài tập 25. Cho hai số có 4 chữ số và 2 chữ số mà tổng của hai số đó bằng 2750. Nếu cả hai
số được viết theo thứ tự ngược lại thì tổng của hai số này bằng 8888 . Tìm hai số đã cho
Bài tập 26. Tìm số có bốn chữ số khác nhau, biết rằng nếu viết thêm một chữ số 0 vào giữa
hàng nghìn và hàng trăm thì được số mới gấp 9 lần số phải tìm
Bài tập 27. Tìm số tự nhiên có bốn chữ số, sao cho khi nhân số đó với 4 ta được số gồm bốn
chữ số ấy viết theo thứ tự ngược lại
Bài tập 28. Tìm số tự nhiên có bốn chữ số, sao cho khi nhân số đó với 9 ta được số gồm
bốn chữ số ấy viết theo thứ tự ngược lại
Bài tập 29. Tìm số tự nhiên có năm chữ số, sao cho khi nhân số đó với 9 ta được số gồm
năm chữ số ấy viết theo thứ tự ngược lại
Bài tập 30. Tìm số tự nhiên có ba chữ số, biết rằng nếu xoá chữ số hàng trăm thì số ấy giảm
9 lần.
Bài tập 31. Tìm số tự nhiên có bốn chữ số, biết rằng nếu xoá chữ số hàng nghìn thì số ấy
giảm 9 lần.
Bài tập 32. Tìm số tự nhiên có bốn chữ số, biết rằng chữ số hàng trăm bằng 0 và nếu xoá
chữ số 0 đó thì số ấy giảm 9 lần Bài tập 33. Một số tự nhiên có hai chữ số tăng gấp 9 lần nếu viết thêm một chữ số 0 vào
giữa các chữ số hàng chục và hàng đơn vị của nó . Tìm số ấy
Bài tập 34. Tìm số tự nhiên có ba chữ số, biết rằng số đó vừa chia hết cho 5 và chia hết cho
9 , hiệu giữa số đó với số viết theo thứ tự ngược lại bằng 297.
tìm số tự nhiên có 2 chữ số biết rằng hai ần chữ số hàng đơn vị lớn hơn chữ số hàng chục 1 đơn vị. nếu viết 2 chữ số ấy theo thứ tự ngược nhau thì được 1 số mới bé hơn số cũ 27 đơn vị