\(a=\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+......+\frac{1}{2003\times2005}\)
tính :\(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+\frac{1}{4\times5\times6}+\frac{1}{5\times6\times7}+\frac{1}{6\times7\times8}+\frac{1}{7\times8\times9}+\frac{1}{8\times9\times10}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}.\left(\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right)=\frac{1}{2}.\frac{22}{45}=\frac{11}{45}\)
TÍNH NHANH:\(\frac{1}{1\times3\times5}+\frac{1}{2\times5\times8}+\frac{1}{3\times5\times7}+\frac{1}{5\times8\times11}+\frac{1}{5\times7\times9}+\frac{1}{8\times11\times14}+...+\frac{1}{995\times997\times999}+\frac{1}{1493\times1496\times1499}\)
Đây là tổng của 2 dãy:
\(\frac{1}{1\times3\times5}+\frac{1}{3\times5\times7}+\frac{1}{5\times7\times9}+...+\frac{1}{995\times997\times999}\)(1)
và
\(\frac{1}{2\times5\times8}+\frac{1}{5\times8\times11}+\frac{1}{8\times11\times14}+...+\frac{1}{1493\times1496\times1499}\)(2)
Dãy số có dạng là tích 3 thừa số, trong đó thừa số thứ 3 hơn thừa số thứ nhất n đơn vị và 2 thừa số cuối của phân số trước là 2 thừa số đầu của phân số sau. Để tính dãy kiểu này cần đưa tử số về hiệu của thừa số thứ 3 và thừa số thứ nhất (hiệu = n):
Vậy nhân dãy thứ nhất với 4:
\(=\frac{4}{1\times3\times5}+\frac{4}{3\times5\times7}+\frac{4}{5\times7\times9}+...+\frac{4}{995\times997\times999}\)
Nhận xét:
\(\frac{4}{1\times3\times5}=\frac{5-1}{1\times3\times5}=\frac{5}{1\times3\times5}-\frac{1}{1\times3\times5}=\frac{1}{1\times3}-\frac{1}{3\times5}\)\(\frac{4}{3\times5\times7}=\frac{7-3}{3\times5\times7}=\frac{7}{3\times5\times7}-\frac{3}{3\times5\times7}=\frac{1}{3\times5}-\frac{1}{5\times7}\)Vậy 4 lần tổng dãy 1 là:
\(\frac{1}{1\times3}-\frac{1}{3\times5}+\frac{1}{3\times5}-\frac{1}{5\times7}+...+\frac{1}{995\times997}-\frac{1}{997\times999}\)
\(\frac{1}{1\times3}-\frac{1}{997\times999}\)
Suy ra tổng dãy (1) là \(\left(\frac{1}{3}-\frac{1}{997\times999}\right)\times\frac{1}{4}\)
Làm tương tự tính được tổng dãy (2) là: \(\left(\frac{1}{2\times5}-\frac{1}{1496\times1499}\right)\times\frac{1}{6}\)
Cộng 2 kết quả lại được tổng cần tính
Tính : \(\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}...+\frac{1}{2009\times2011}\)
gọi biểu thức đó là A
\(A=\frac{1}{3.5}+\frac{1}{5.7}+.......+\frac{1}{2009.2011}\)
\(A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.......+\frac{1}{2009}-\frac{1}{2011}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{2011}\right)\)
\(A=\frac{1}{2}.\left(\frac{2008}{6033}\right)\)
\(A=\frac{1004}{6033}\)
mink nghĩ vậy bạn ạ
\(\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{96}\)
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right).\left(2x+3\right)}=\frac{15}{96}\)
\(2.\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right).\left(2x+3\right)}\right)=2.\frac{15}{96}\)
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{\left(2x+1\right).\left(2x+3\right)}=\frac{5}{16}\)
\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{5}{16}\)
\(\frac{1}{3}-\frac{1}{2x+3}=\frac{5}{16}\)
\(\frac{1}{2x+3}=\frac{1}{3}-\frac{5}{16}\)
\(\frac{1}{2x+3}=\frac{1}{48}\)
=> 2x + 3 = 48
=> 2x = 48 - 3
=> 2x = 45
=> x = 45/2
\(\frac{1}{3\times4}-\frac{1}{4\times5}-\frac{1}{5\times6}-\frac{1}{6\times7}-\frac{1}{7\times8}-\frac{1}{8\times9}-\frac{1}{9\times10}\)
:V Làm sai hết rồi sai ngay từ bước đầu tiên.
\(\frac{1}{3.4}-\frac{1}{4.5}-\frac{1}{5.6}-....-\frac{1}{9.10}\)
\(=\frac{1}{3.4}-\left(\frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{9.10}\right)\)
\(=\frac{1}{12}-\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=\frac{1}{12}-\left(\frac{1}{4}-\frac{1}{10}\right)\)
\(=\frac{1}{12}-\frac{3}{20}\)
\(=\frac{-11}{12}\)
\(\frac{1}{3.4}-\frac{1}{4.5}-...-\frac{1}{9.10}\)
= \(-\left(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
= \(-\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)
= \(-\left(\frac{1}{3}-\frac{1}{10}\right)\)
= \(-\frac{7}{30}\)
\(=-(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10})\)
\(=-\left(\frac{1}{3}-\frac{1}{10}\right)\)
\(=-\frac{7}{30}\)
~ Hok tốt ~
Tính nhanh : \(\frac{1}{1\times3\times5}+\frac{1}{3\times5\times7}+\frac{1}{5\times7\times9}+.....+\frac{1}{45\times47\times49}\) Help me . Mình cần gấp , HELP
Đặt \(A=\frac{1}{1.2.3}+\frac{1}{3.5.7}+...+\frac{1}{45.47.49}\)
\(\Rightarrow4A=\frac{4}{1.3.5}+\frac{4}{3.5.7}+...+\frac{4}{45.47.49}\)
\(=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{45.47}-\frac{1}{47.49}\)
\(=\frac{1}{3}-\frac{1}{47.49}\)
\(\Rightarrow A=\frac{\frac{1}{3}-\frac{1}{47.49}}{4}=\frac{575}{6909}\)
Tính \(\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+\frac{1}{9\times11}+\frac{1}{11\times13}\)
SAI HẾT RỒI.........CẦN THÌ TỚ GIẢI LẠI CHO !!
thế này :
= \(\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{11.13}\right)\)
= \(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{11}-\frac{1}{13}\right)\)
= \(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{13}\right)\)
= \(\frac{1}{2}.\frac{10}{39}\)
= \(\frac{5}{39}\)
Vậy kq = \(\frac{5}{39}\)
Tìm x biết \(\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+.....+\frac{1}{\left(2x+1\right).\left(2x+3\right)}=\frac{15}{93}\)
\(2.\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+.....+\frac{1}{\left(2x+1\right).\left(2x+3\right)}\right)=2.\frac{15}{93}\)
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+.....+\frac{2}{\left(2x+1\right).\left(2x+3\right)}=\frac{10}{31}\)
\(\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\frac{1}{2x+3}=\frac{1}{3}-\frac{10}{31}\)
\(\frac{1}{2x+3}=\frac{1}{93}\)
\(\Rightarrow2x+3=93\)
\(\Rightarrow2x=90\)
\(\Rightarrow x=45\)
\(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+\frac{1}{6\times7}+\frac{1}{7\times8}+\frac{1}{8\times9}+\frac{1}{9\times10}\)
1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9+1/9.10
=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6+1/7-1/7+1/8-1/8+1/9+1/9-1/10
=1/2-1/10
=5/10-1/10
=4/10=2/5
\(\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+\frac{1}{5x6}+\frac{1}{6x7}+\frac{1}{8x9}+\frac{1}{9x10}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(\frac{1}{2}-\frac{1}{10}\)
\(\frac{2}{5}\)
= 1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10
= 1/2-0-0-0-0-0-0-0-0-1/10
=1/2 - 1/10
=2/5
tớ trước nhé