Tìm GTLN của:
`B=-9x^2-3x-1`
Tìm GTLN của A=3x^2+9x+17)/(3x^2+9x+7)
Ta có \(A=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{\left(3x^2+9x+7\right)+10}{3x^2+9x+7}=\)
\(=\frac{3x^2+9x+7}{3x^2+9x+7}+\frac{10}{3x^2+9x+7}\)
\(=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3\left(x+\frac{3}{2}\right)^2+\frac{1}{4}}\)
Từ đây suy ra A có GTLN là 41, khi \(x=-\frac{3}{2}\)
1. Tìm GTNN của A= \(\frac{x^2-2x+2018}{x^2}\)
2. Tìm GTLN của B=\(\frac{3x^2+9x+17}{3x^2+9x+7}\)
3. Tìm GTLN của M= \(\frac{3x^2+14}{x^2+4}\)
4. Cho x+y=2. Tìm GTNN của A= \(x^3+y^3+2xy\)
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))
ê viết lộn dòng này :v
\(MinA=\frac{2017}{2018}\)nha
a, Tìm GTNN
A = ( 2x^2 - 16x + 43)/(x^2 - 8x + 22)
b, Tìm GTLN
B = (3x^2 + 9x + 17)/(3x^2 + 9x + 7)
A=[2(x^2-8x+22)-1]/(x^2-8x+22)
A=2-1/[(x-4)^2+6]
A nho nhat khi (x-4)^2=0=> x=4
min(A)=2-1/6
Tìm GTLN của biểu thức
I= 3x - 9x² - 1
`I=3x-9x^{2}-1`
`I=-(9x^2-3x+1)`
`I=-(9x^2-3x+1/4+3/4)`
`I=-(3x-1/2)^{2}-3/4`
Vì `-(3x-1/2)^2 <= 0` với mọi `x`
`=>-(3x-1/2)^2-3/4 <= -3/4` với mọi `x`
Hay `I <= -3/4` với mọi `x`
`=>I_{mi n}=-3/4 <=>x=1/6`
Tìm GTLN của các biểu thức sau:
a) A= -4x^2+4x-1
b) B= -x^2+5x
c) C= -3x^2-9x+6
a: \(A=-4x^2+4x-1\)
\(=-\left(4x^2-4x+1\right)\)
\(=-\left(2x-1\right)^2\le0\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
b: \(B=-x^2+5x\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}\right)+\dfrac{25}{4}\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
a) \(A=-4x^2+4x-1=-\left(4x^2-4x+1\right)\)
\(=-\left(2x-1\right)^2\le0\)
\(maxA=0\Leftrightarrow x=\dfrac{1}{2}\)
b) \(B=-x^2+5x=-\left(x^2-5x+\dfrac{25}{4}\right)+\dfrac{25}{4}\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\)
\(maxB=\dfrac{25}{4}\Leftrightarrow x=\dfrac{5}{2}\)
c) \(C=-3x^2-9x+6=-3\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{51}{4}\)
\(=-3\left(x+\dfrac{3}{2}\right)^2+\dfrac{51}{4}\le\dfrac{51}{4}\)
\(maxC=\dfrac{51}{4}\Leftrightarrow x=-\dfrac{3}{2}\)
Tìm GTLN hay GTNN
A=3x^2-9x+5
B= -2x^2N+5x+2
C=(1-x) (3x+4)
Tìm gtln của
A=-3x^2-6x
B=2x-x^2
C=12x-9x^2+15
Tìm gtln của
A=-3x^2-6x
B=2x-x^2
C=12x-9x^2+15
A = -3x^2 - 6x = -3( x^2 + 2x ) = - 3 ( x^2 + 2x + 1 - 1 ) = - 3 [ ( x+ 1 )^2 - 1 )
= - 3( x + 1 )^2 + 3
Vì -3(x + 1 )^2 <=0 => -3( x+ 1 )^2 + 3 <= 3
VẬy GTLN của A là 3 khi x+ 1 = 0 => x = -1
B = 2x - x^2
= - ( x^2 -2x )
= - ( x^2 -2x+ 1 - 1 )
= - [ ( x- 1 )^2 - 1 )
= - ( x- 1 )^2 + 1
Vì - ( x- 1 )^2 <= 0 => - ( x - 1 )^2 + 1 <= 1
VẬy GTLN của B = 1 khi x = 1
C = 12x - 9x^2 + 15
= - ( 9x^2 -12x + 15)
= - (9x^2 - 2.3x.2 + 4 + 9 )
= - ( 3x- 2 )^2 - 9
Đánh giá tương Tự
VẬy GTLN B = -9 khi x =2/3
Đúng cho mình nha
Tìm GTLN (max), GTNN (min) của y = 2 x 2 - 3 x + 9 x - 1 trên 2 ; 4