Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Hoàng Nam ao2
Xem chi tiết
nguyễn chí hiếu
Xem chi tiết
Huỳnh Diệu Bảo
2 tháng 2 2017 lúc 23:44

a3+b3+c3=(a+b+c)3-3(a+b)(a+c)(b+c)
Vì a3+b3+c\(⋮\)6 nên [(a+b+c)3-3(a+b)(a+c)(b+c)] \(⋮\)6
Mà trong 3(a+b)(a+c)(b+c) luôn có ít nhất 1 số chẵn ( xét các trường hợp a,b,c lần lượt là : lẻ, lẻ, lẻ; chẵn,chẵn, chẵn; chẵn, lẻ, lẻ; chẵn, chẵn, lẻ;chẵn lẻ chẵn; lẻ chẵn lẻ; lẻ chẵn chẵn; lẻ lẻ chẵn..[tìm thêm ])
nên 3(a+b)(a+c)(b+c)\(⋮\)6
=> (a+b+c)3 phải chia hết cho 6 
Lại có a,b,c là các số tự nhiên nên suy ra a+b+c phải chia hết cho 6.

Nguyen Hong Hung
9 tháng 9 2019 lúc 22:50

a3+b3+c3=(a+b+c)(a^2+b^2+c^2−ab−bc−ac)+3abc

a^3+b^3+c^3=(a+b+c)(a^2+b2+c^2−ab−bc−ac)+3abc

                    =(a+b+c)[a2+b2+c2+2ab+2ac+2bc−3ac−3bc−3ab)+3abc=(a+b+c)[a2+b2+c2+2ab+2ac+2bc−3ac−3bc−3ab)+3abc

                    =(a=b+c)[(a+b+c)2−3(ab+bc+ac)]+3abc=(a=b+c)[(a+b+c)2−3(ab+bc+ac)]+3abc

*Nếu a+b+c⋮3⇒a3+b3+c3⋮3a+b+c⋮3⇒a3+b3+c3⋮3

*Nếu a3+b3+c3⋮3⇒(a+b+c)[(a+b+c)2−3(ab+bc+ca)]⋮3

⇒a+b+c⋮3a3+b3+c3⋮3

⇒(a+b+c)[(a+b+c)2−3(ab+bc+ca)]⋮3

⇒a+b+c⋮3

=>đpcm

Mk nhác ghi mũ lắm thông cảm nha Vd; a2=a^2

Trần Lan Anh
Xem chi tiết
Phạm Thanh Hà
Xem chi tiết
Thanh Thuy Nguyen
Xem chi tiết
hoàng bảo
23 tháng 5 2022 lúc 15:37

ko bt

 

乡☪ɦαทɦ💥☪ɦųα✔
Xem chi tiết
Đặng Ngọc Quỳnh
7 tháng 10 2020 lúc 21:08

b) ta có: 30=2.3.5

\(a^2\equiv a\left(mod2\right)\Rightarrow a^4\equiv a^2\equiv a\left(mod2\right)\)

\(\Rightarrow\hept{\begin{cases}a^5\equiv a^2\equiv a\left(mod2\right)\\b^3\equiv b\left(mod3\right)\\c^5\equiv c\left(mod5\right)\end{cases}\Rightarrow b^5\equiv b^3\equiv b\left(mod3\right)}\)

\(\Rightarrow a^5+b^5+c^5\equiv a+b+c\left(mod2.3.5\right)\)

Khách vãng lai đã xóa
Nguyễn Tuấn Anh_4022
7 tháng 10 2020 lúc 21:15

\(a^2+b^2+c^2=\left(a+b+c\right)+\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)

\(=\left(a+b+c\right)+a\left(a^2-1\right)+b\left(b^2-1\right)+c\left(c^2-1\right)\)

\(=\left(a+b+c\right)+\left(a-1\right)\left(a+1\right)+\left(b-1\right)\left(b+1\right)+\left(c-1\right)\left(c+1\right)\)

\(mà\)\(a\left(a-1\right)\left(a+1\right)⋮6\)

\(b\left(b-1\right)\left(b+1\right)⋮6\)

\(c\left(c-1\right)\left(c+1\right)⋮6\)

\(a+b+c⋮6\)

\(\Leftrightarrow(a^3+b^3+c^3)⋮6\)\((đpcm)\)

Khách vãng lai đã xóa
Ngân Bùi
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2021 lúc 14:32

a: \(A=\left(1+3\right)+...+3^{10}\left(1+3\right)\)

\(=4\left(1+...+3^{10}\right)⋮4\)

Cao Phan Tuấn Anh
Xem chi tiết
nguyễn thu phượng
Xem chi tiết
ST
13 tháng 7 2018 lúc 17:30

Thiếu điều kiện a,b,c thuộc Z

Ta có: \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)\) là tích 3 số nguyên liên tiếp nên (a-1)a(a+1) chia hết cho 6

CM tương tự ta cũng có: \(b^3-b⋮6;c^3-c⋮6\)

\(\Rightarrow\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\)

-Nếu \(a^3+b^3+c^3⋮6\Rightarrow a+b+c⋮6\)

-Nếu \(a+b+c⋮6\Rightarrow a^3+b^3+c^3⋮6\)

=>đpcm