cho tam giác abc cân tại a, kẻ am vuông góc bc.
a) chứng minh tam giác bam = tam giác cam
b)từ m kẻ đường song song với ab cắt ac tại n, bn cắt am tại g, cg cắt ab tại e. cminh en bằng bm
Cho tam giác ABC có AB = AC. M là trung điểm của BC
a) Chững minh tam giác BAM = tam giác CAM và AM là tia phân giác của góc BAC.
b)Từ M kẻ đường thẳng song song với AC cắt AB tại Q, Từ M kẻ đường thẳng song song với AB cắt AC tại K. Chứng minh MQ= MK
c) Gọi P là trung điểm của BM. Tính số đo của góc QPM
làm ơn mak huhu
cho tam giác abc cân tại a (góc a nhọn). từ a kẻ ah vuông góc với bc a) chứng minh tam giác ahb=tam giác ahc và h là trung điểm của bc. b) gọi m trung điểm của ac. qua c kẻ đường thẳng song song với ab cắt bm tại e. chứng minh ab bằng ce và tam giác ace cân tại c. c) gọi i là giao điểm của ah và be . chứng minh i là trọng tâm của tam giác abc . d) chứng minh ab+ae>3bi. lớp 7
Cho tam giác ABC cân tại A. Tia phân giác góc BAC cắt cạnh BC tại M
a) Chứng minh ∆ A M B = ∆ A M C .
b) Kẻ M E ⊥ A B ( E ∈ A B ) , M F ⊥ A C ( F ∈ A C ) . Chứng minh tam giác AEF cân.
c) Chứng minh A M ⊥ E F .
d) Qua B kẻ đường thẳng song song với AC cắt đường thẳng FM tại I Chứng minh BE = BI
Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC tại H. D thuộc AC sao cho AH=AD.Đường thẳng vuông góc với ACtaij D cắt BC tại M.Chứng minh
a) Am là phân giác của góc HAC
b) AB=BM
c) từ m kẻ đường thawgr song song với AH cắt AC tại E. Chứng Minh BE vuông góc với AM
Cho tam giác ABC cân tại A. Kẻ AM vuông góc với BC tại M. Từ M kẻ đường thẳng song song với AB cắt AC tại D Chứng minh D là trung điểm của AC
ΔABC cân tại A có AM là đường cao
nên M là trung điểm của BC
Xét ΔCAB có
M là trung điểm của BC
MD//AB
=>D là trung điểm của AC
cho tam giác abc vuông cân tại a. hai tia phân giác bm và cn cắt nhau tại i ( m thuộc ac, n thuộc ab ) . chứng minh :
a, im=in và mn song song bc
b, qua a và n kẻ đường vuông góc với bm cắt bc lần lượt tại d và e . chứng minh am=de=cd
c, tam giác mcd là tam giác gì ?
d, h là trung điểm của bc. chứng minh ah, bm, cn ddoongwf quy
e, chứng minh bm+am>bc
các bạn giúp mình với
mai tớ kiểm tra rồi
Cho tam giác ABC có AB =AC, M là trung điểm của BC a) Chứng minh AM là tia phân giác của góc BAC b) AM vuông góc với BC c) Từ C kẻ đường thẳng song song với AB, cắt AM tại D. Chứng minh tam giác ADC cân
a/ Xét tg vuông ABC có
BM=CM (gt) => AM=BM=CM=BC/2 (trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)
=> tg ABM cân tại M => \(\widehat{BAM}=\widehat{ABM}\) (góc ở đáy tg cân)
b/ Xét tg vuông AEF và tg vuông AFM có
\(\widehat{AEF}=\widehat{FAM}\) (cùng phụ với \(\widehat{AFE}\) ) (1)
Mà AM=CM (cmt) => tg MAC cân tại M => \(\widehat{FAM}=\widehat{ACB}\) (góc ở đáy th cân) (2)
Từ (1) và (2) \(\Rightarrow\widehat{ACB}=\widehat{AEF}\)
Xét tg MBE và tg MFC có
\(\widehat{AEF}=\widehat{ACB}\) (cmt)
\(\widehat{BME}=\widehat{CMF}\) (góc đối đỉnh)
=> tg MBE đồng dạng với tg MFC (g.g.g)
c/ Xét tg vuông ABC và tg vuông AFE có
\(\widehat{AEF}=\widehat{ACB}\) (cmt)
=> tg ABC đông dạng với tg AFE
\(\Rightarrow\dfrac{AB}{AF}=\dfrac{AC}{AE}\Rightarrow AB.AE=AC.AF\)
d/