Giải bất phương trình
\(\frac{3x}{5}+\frac{x-1}{4}=5-\frac{3x-1}{2}\)
giải bất phương trình và phương trình;
A. 3x+2(x+1)=6x-7
B.\(\frac{x+3}{5}< \frac{5-x}{3}\)
C. \(\frac{5}{x+1}+\frac{2x}{x^2-3x-4}=\frac{2}{x-4}\)
A . 3x + 2(x + 1) = 6x - 7
<=> 3x + 2x + 2 = 6x -7
<=> 5x - 6x = -7 - 2
<=> -x = -9
<=> x =9
B . \(\frac{x+3}{5}\).< \(\frac{5-x}{3}\)
=> 3(x +3) < 5(5 -x)
<=> 3x+9 < 25 - 5x
<=> 3x + 5x < 25 - 9
<=> 8x < 16
<=> x < 2
C . \(\frac{5}{x+1}\)+ \(\frac{2x}{x^2-3x-4}\)=\(\frac{2}{x-4}\)
<=> \(\frac{5}{x+1}\)+ \(\frac{2x}{x^2+x-4x-4_{ }}\)= \(\frac{2}{x-4}\)
<=> \(\frac{5}{x+1}\)+ \(\frac{2x}{\left(x+1\right)\left(x-4\right)}\)= \(\frac{2}{x-4}\)
<=> 5(x - 4) + 2x = 2(x +1)
<=> 5x - 20 + 2x = 2x + 2
<=>7x - 2x = 2 + 20
<=> 5x = 22
<=> x =\(\frac{22}{5}\)
giải bất phương trình
\(\frac{3x-5}{4x+1}-\frac{x-2}{3x-5}=0\)
\(\frac{3x-5}{4x+1}-\frac{x-2}{3x-5}=0\)
\(\Rightarrow\frac{3x-5}{4x+1}=\frac{x-2}{3x-5}\)
\(\Rightarrow\left(3x-5\right)^2=\left(4x+1\right)\left(x-2\right)\)
\(\Rightarrow9x^2-30x+25=4x^2+7x-2\)
\(\Rightarrow5x^2-37x+27=0\)
Sai đề ???
Cái phần của chị Linh :) là đúng nhưng cái phần gần cuối hình như chị sai chị giải cách bất phương trình hơi khó hiểu
Còn lại em nghĩ sai đề?
Bài này hơi khó nên em nghĩ thế thoi ạ -.-
_ko chép đề_ < đây là phương trình chứ bất phương trình đâu>
\(\Leftrightarrow\frac{\left(3x-5\right)^2-\left(x-2\right)\left(4x+1\right)}{\left(4x+1\right)\left(3x-5\right)}=0\)(quy đồng)
\(\Leftrightarrow9x^2-30x+25-\left(4x^2+x-8x-2\right)=0\)(nhân chéo)
\(\Leftrightarrow9x^2-30x+25-4x^2-x+8x+2=0\)
\(\Leftrightarrow5x^2-23x+27=0\)
Ta có : \(\Delta=\left(-23\right)^2-4.5.27=-686>0\)
=> Phương trình vô nghiệm
Giải các bất phương trình sau:
a) \(\sqrt{2-|x-2|}>x-2\)
b) \(x^2+3x+2\geq 2\sqrt{x^2+3x+5}\)
c) \(4\sqrt{x}+\frac{2}{\sqrt{x}}<2x+\frac{1}{2x}+2\)
Giải bất phương trình:
\(\frac{4x-5}{3}-\frac{x+2x^2}{2}>\frac{x\left(1-3x\right)}{3}-4\)
giải bất phương trình sau và biểu diễn tập nghiệm trên trục số
\(\frac{x+4}{5}+\frac{3x+2}{10}< \frac{x-1}{3}\)
\(\frac{x+4}{5}+\frac{3x+2}{10}< \frac{x-1}{3}\)
\(\Leftrightarrow\frac{6\left(x+4\right)}{30}+\frac{3\left(3x+2\right)}{30}< \frac{10\left(x-1\right)}{30}\)
\(\Leftrightarrow6x+24+9x+6< 10x-10\)
\(\Leftrightarrow5x+40< 0\)
\(\Leftrightarrow x< -8\)
Tự biểu diễn nha bạn
\(\frac{x+4}{5}+\frac{3x+2}{10}< \frac{x-1}{3}\)
\(\Rightarrow\frac{6\left(x+4\right)}{30}+\frac{3\left(3x+2\right)}{30}< \frac{10\left(x-1\right)}{30}\)
\(\Rightarrow6x+24+9x+6< 10x-10\)
\(5x< -40\)
\(\Rightarrow x< -8\)
\(\frac{x+4}{5}+\frac{3x+2}{10}< \frac{x-1}{3}\)
\(\Leftrightarrow\frac{4\left(x+4\right)}{30}+\frac{3\left(3x+2\right)}{30}< \frac{10\left(x-1\right)}{30}\)
\(\Leftrightarrow\frac{4x+16+9x+6}{30}< \frac{10x-10}{30}\)
\(\Leftrightarrow\frac{13x+22}{30}< \frac{10x-10}{30}\)
\(\Leftrightarrow13x+22< 10x-10\)
\(\Leftrightarrow13x-10x< -22-10\)
\(\Leftrightarrow3x< -33\)
\(\Leftrightarrow x< -11\)
Kl : BPT có nghiệm { x/ x<-11}
Bn tự biểu diễn nhé !
Giải các bất phương trình:
\(a,\frac{2x}{5}+\frac{3-2x}{3}\ge\frac{3x+2}{2}\)
\(b,1-\frac{2x-5}{6}>\frac{3-x}{4}\)
\(\frac{2x}{5}+\frac{3-2x}{3}\ge\frac{3x+2}{2}\)
\(\Leftrightarrow\)\(\frac{12x}{30}+\frac{10\left(3-2x\right)}{30}\ge\frac{15\left(3x+2\right)}{30}\)
\(\Leftrightarrow\)12x + 30 - 20x \(\ge\) 45x + 30
\(\Leftrightarrow\) 12x - 20x - 45x \(\ge\) -30 + 30
\(\Leftrightarrow\)- 53x \(\ge\)0
\(\Leftrightarrow\)x \(\le\)0
Vậy bất phương trình có nghiệm là : x \(\le0\)
b) \(1-\frac{2x-5}{6}>\frac{3-x}{4}\)
\(\Leftrightarrow\)\(\frac{12}{12}-\frac{2\left(2x-5\right)}{12}>\frac{3\left(3-x\right)}{12}\)
\(\Leftrightarrow\) 12 - 4x + 10 > 9 - 3x
\(\Leftrightarrow\)-4x + 3x > -12 - 10 + 9
\(\Leftrightarrow\)-x > -13
\(\Leftrightarrow\)x < 13
Vậy bất phương trình có nghiệm là : x < 13
Giải bất phương trình
\(\frac{5x^2-3x}{5}+\frac{3x+1}{4}< \frac{x\left(2x+1\right)}{2}-\frac{3}{2}\)
Giải các bất phương trình:
\(a,\frac{5x-3}{5}+\frac{2x+1}{4}\le\frac{2-3x}{2}-5\)
\(b,\frac{x+2}{2013}+\frac{x+5}{2010}>\frac{x+8}{2007}+\frac{x+11}{2004}\)
ta có:
\(\frac{x+2}{2013}+\frac{x+5}{2010}>\frac{x+8}{2007}+\frac{x+11}{2004}\)
\(\Leftrightarrow\left(\frac{x+2}{2013}+1\right)+\left(\frac{x+5}{2010}+1\right)>\left(\frac{x+8}{2007}+1\right)+\left(\frac{x+11}{2004}+1\right)\)
\(\Leftrightarrow\frac{x+2015}{2013}+\frac{x+2015}{2010}>\frac{x+2015}{2007}+\frac{x+2015}{2004}\)
\(\Leftrightarrow\frac{x+2015}{2013}+\frac{x+2015}{2010}-\frac{x+2015}{2007}-\frac{x+2015}{2004}>0\)
\(\Leftrightarrow\left(x+2015\right)\left(\frac{1}{2013}+\frac{1}{2010}-\frac{1}{2007}-\frac{1}{2004}\right)>0\)
\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x+2015>0\\\frac{1}{2013}+\frac{1}{2010}-\frac{1}{2007}-\frac{1}{2004}>0\end{cases}}\\\hept{\begin{cases}x+2015< 0\\\frac{1}{2013}+\frac{1}{2010}-\frac{1}{2007}-\frac{1}{2004}< 0\end{cases}}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x+2015>0\\\frac{1}{2013}+\frac{1}{2010}-\frac{1}{2007}-\frac{1}{2004}>0\end{cases}}\\\hept{\begin{cases}x+2015< 0\\\frac{1}{2013}+\frac{1}{2010}-\frac{1}{2007}-\frac{1}{2004}< 0\end{cases}}\end{cases}}\)
Giải phương trình
\(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}\)\(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}\)