Tìm hai số hữu tỉ x, y, biết:
x-y=x.y=x:y ( x # 0 )
Tìm hai số hữu tỉ x,y sao cho:
a) x-y=2(x+y) = x:y
b) x+y = x.y =x:y
a/
\(x-y=2\left(x+y\right)\Rightarrow x=-3y\)
\(x-y=\frac{x}{y}\Rightarrow-3y-y=\frac{-3y}{y}=-3\Rightarrow-4y=-3\Rightarrow y=\frac{3}{4}\)
\(x=-3.\frac{3}{4}=-\frac{9}{4}\)
b/
\(xy=\frac{x}{y}\Rightarrow xy^2=x\Leftrightarrow x\left(y^2-1\right)=0\)\(\Leftrightarrow x=0\) hoặc \(y^2=1\)
+TH1: \(x=0\) \(0+y=0.y=\frac{0}{y}=0\Rightarrow y=0\)(loại do \(y\ne0\) (y là mẫu số)
+TH2: \(y^2=1\) \(\Rightarrow\) \(y=1\) hoặc \(y=-1\)
\(y=1\) thì \(x+1=x.1\Rightarrow1=0\) (vô lí)
\(y=-1\) thì \(x-1=-x\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2};y=-1\)
tìm hai số hữu tỉ x,y biết rằng:
a) x-y=x.y=x:y
b) x-y=2.(x+y)=x:y
tìm hai số hữu tỉ x và y sao cho x-y=x.y=x:y(y#0)
x-y=x.y
=>x=x.y+y=y.(x+1)
=>x/y=x+1 (1)
Mà x-y=x/y (gt)
=>x-y=x+1
=>-y=1
=>y=-1
Thay y=-1 vào x-y=x.y
=>x-(-1)=x.(-1)
=>x+1=-x
=>2x=-1=>x=-1/2
Vậy x=-1/2;y=-1
tìm hai số hữu tỉ x và y sao cho x- y = x.y= x:y (y#0)
Dễ thấy rằng y # 0 (để cho x : y là số xác định)
Hơn nữa x # 0, vì nếu x = 0 thì xy = x : y = 0 nhưng x - y # 0 (vì y # 0)
Vì xy = x : y suy ra y^2 = 1 ---> y = 1 hoặc y = -1
+ Nếu y = 1 ---> x - 1 = x.1 (vô nghiệm nên tr/hợp này loại)
+ Nếu y = -1 ---> x + 1 = - x ---> 2x = -1 ---> x = -1/2 (nhận)
Vậy x = -1/2 ; y = -1.
Ta có : x - y = xy => x = xy + y = y (x+1)
=> x : y = x + 1 ( Vì y khác 0)
Ta có : x : y = x - y => x + 1 = x - y => x - (-1) = x- y => y = -1
Thay y = -1 vào x - y = xy => x + 1 = x.(-1)
=> x + 1 = -x => -x - x = 1 => -2x = 1
=> x = -1/2
Vậy y = -1 và x = -1/2
tìm hai số hữu tỉ x và y(y khác 0) sao cho x+y=x.y=x:y
xy=x:y
=>y2=x:x=1
=>y=1 hoặc y=-1
*)y=1 =>x+1=x(vô lí)
*)y=-1 =>x-1=-x
=>x=1/2
Vậy y=-1 x=1/2
ta có x + y =xy => x = xy - y => x = y(x-1)
Ta lại có x + y = x / y thay x = y(x-1) vào vế phải :
x+ y = \(\frac{y\left(x-1\right)}{y}=x-1\)
=> x + y = x- 1 => y = -1
ta có x + y = xy
thay y = -1 vào ta có:
x + - 1 = -1 .x => x - 1 = -x => 2x = -1 => x = -1/2
VẬy y = -1 ; x = -1/2
đua phía dưới chuyển về đối đầu ngũ người vô đối
Tìm hai số hữu tỉ x và y sao cho x+y=x.y=x:y với y khác 0
xy=x:y
\(\Rightarrow y^2=x:x=1\)
\(\Rightarrow y=1\) hoặc \(y=-1\)
\(y=1\Rightarrow x+1=x\)( vô lí)
\(y=-1\Rightarrow x-1=-x\)
\(\Rightarrow x=\frac{1}{2}\)
Vậy x=\(\frac{1}{2}\), \(y=-1\)
tíc mình nha
\(x+y=x.y=\frac{x}{y}\)(1)
Nhân 3 vế với y
\(y\left(x+y\right)=x.y^2=x\)
Vậy:
\(x.y^2=x\)
Chia hai vế cho x:
\(y^2=1\Rightarrow y=1\)(2)
Thế (2) vào (1)
\(x+1=x.1=\frac{x}{1}\)
\(\Leftrightarrow x+1=x=x\)
\(\Leftrightarrow x-x=-1\Leftrightarrow0=\left(-1\right)\text{(Vô lý)}\)
Vậy không thể tìm được x và y
Tìm số hữu tỉ x; y biết
a). x+y=x.y=x:y
b). x-y=x.y=x:y
a) \(xy=x+y\Rightarrow y=xy-x=x\left(y-1\right)\)
\(\Rightarrow x:y=\frac{x}{x\left(y-1\right)}=y-1\)
\(\Rightarrow x+y=y-1\Leftrightarrow x=-1\)
\(\Rightarrow y-1=-y\Leftrightarrow2y=1\Leftrightarrow y=\frac{1}{2}\)
Vậy \(x=-1;y=\frac{1}{2}\)
b) \(x-y=xy\Rightarrow x=xy+y=y\left(x+1\right)\)
\(\Rightarrow x:y=\frac{y\left(x+1\right)}{y}=x+1\)
\(\Rightarrow x-y=x+1\Leftrightarrow y=-1\)
\(\Leftrightarrow x+1=-x\Leftrightarrow2x=-1\Leftrightarrow x=\frac{-1}{2}\)
tìm các số x,y biết:x+y=x.y=x:y
x+y=xy
=>x=xy-y=y(x-1)
=>x/y=x-1
mà theo đề:x+y=x/y
=>x+y=x-1
=>x+y=x+(-1)=>y=-1
Thay y=-1 vào x+y=xy ta có:
x+(-1)=x.(-1)=>x+(-1)=-x=>x-1=-x=>x-(-x)=1=>2x=1=>x=1/2=0,5
Vậy (x;y)=(0,5;-1)
Tìm số hữu tỉ x; y biết
a). x+y=x.y=x:y (y khác 0)
b). x-y=x.y=x:y (y khác 0)
a) y khác 0.
x.y = x: y nên \(x.y:\frac{x}{y}=1\) hay \(\frac{x.y.y}{x}=y^2=1\)
Vậy y = 1 hoặc -1 (chắc bạn hiểu chứ)
x+ y = x.y nên \(\frac{x+y}{x.y}=\frac{1}{x}+\frac{1}{y}=1\)
+ Nếu y = 1 thì 1/x = 1-1 = 0 => Không tìm được x
+ Nếu y=-1 thì 1/x = 1-(-1) = 2 => x=1/2
Vậy x=1/2 và y = -1
b) x.y = x: y => y = 1 hoặc -1 (câu a)
x-y = x.y nên \(\frac{x-y}{x.y}=\frac{1}{y}-\frac{1}{x}=1\)
+ Nếu y = 1 thì 1/x = 1-1 = 0 => Không tìm được x
+ Nếu y = -1 thì 1/x = -1 - 1 = -2 => x=-1/2
Vậy x=-1/2 và y=-1
a) xy = x : y
<=> xy2 = x
<=> y2 = 1
<=> y = 1 hoặc y = -1
-nếu y = 1 có
x + 1 = x
<=> 1 = 0 (loại)
-nếu y = -1 có
x - 1 = -x
<=> x = \(\frac{1}{2}\)
thay vào thấy thỏa mãn
Vậy x = \(\frac{1}{2}\) và y = -1
a) x+y = xy = x:y
* xy = x:y
=> xy . y = x
x . y^2 = x
xy^2 - x = 0
x( y^2 - 1 ) = 0
=> x=0 => x=0
y^2 - 1 = 0 y=+- 1
* x+y = xy
+) x=0 => 0+y = 0.y =0
y=0 (loaị)
+) y=1 => x+1 = x.1
1=0 (loại)
+) y= (-1) => x-1 = x.(-1)
x-1=x
x + x= 1
=> x=1/2
Vậy x= 1/2 ; y= -1