Gieo một con xúc xắc được chế tạo cân đối.
Tìm xác suất để số chấm xuất hiện trên con xúc xắc là 2.
Gieo một con xúc xắc được chế tạo cân đối. Tìm xác suất của các biến cố sau:
A: “ Số chấm xuất hiện trên con xúc xắc nhỏ hơn 7”
B: “ Số chấm xuất hiện trên con xúc xắc là 0”
C: “ Số chấm xuất hiện trên con xúc xắc là 6”
Số chấm trên 1 con xúc xắc chỉ có thể là 1;2;3;4;5 hoặc 6
- Biến cố A là biến cố chắc chắn nên biến cố có xác suất là 1.
- Biến cố B là biến cố không thể nên biến cố có xác suất là 0.
- Biến cố C là biến cố ngẫu nhiên
Do có 6 biến cố đồng khả năng và luôn xảy ra 1 trong 6 biến cố đó là: “ Xuất hiện 1 chấm”; “ Xuất hiện 2 chấm”; “ Xuất hiện 3 chấm”; “ Xuất hiện 4 chấm”; “ Xuất hiện 5 chấm”;“ Xuất hiện 6 chấm”
Xác suất của mỗi biến cố đó là \(\dfrac{1}{6}\)
Vậy xác suất để số chấm xuất hiện trên con xúc xắc là 6 là \(\dfrac{1}{6}\)
Hai bạn An và Bình mỗi người gieo một con xúc xắc cân đối. Tính xác suất để:
a) Số chấm xuất hiện trên hai con xúc xắc bé hơn 3;
b) Số chấm xuất hiện trên con xúc xắc mà An gieo lớn hơn hoặc bằng 5;
c) Tích hai số chấm xuất hiện trên hai con xúc xắc bé hơn 6;
d) Tổng hai số chấm xuất hiện trên hai con xúc xắc là một số nguyên tố.
Ta có số phần tử của không gian mẫu là \(n\left( \Omega \right) = 36\).
a) Ta có \(E = \left\{ {\left( {1,1} \right);\left( {1,2} \right);\left( {2,1} \right);\left( {2,2} \right)} \right\}\). Suy ra \(n\left( E \right) = 4\) và \(P\left( E \right) = \frac{4}{{36}} = \frac{1}{9}\).
b) Ta có \(F = \{(1,5);(2,5);(3,5);(4,5);(5,5);(6,5);(1,6);(2,6);(3,6);(4,6);(5,6);(6;6)\}\). Suy ra \(n\left( F \right) = 12\). Vậy \(P\left( F \right) = \frac{{12}}{{36}} = \frac{1}{3}\).
c) Ta có \(G = \{ \left( {1;1} \right);\left( {1,2} \right);\left( {1,3} \right);\left( {1,4} \right);\left( {1,5} \right);\left( {2,1} \right);\left( {2,2} \right);\left( {3,1} \right);\left( {4,1} \right);\left( {5,1} \right)\} \). Suy ra \(n\left( G \right) = 10\). Vậy \(P\left( G \right) = \frac{{10}}{{36}} = \frac{5}{{18}}\).
d) Ta có \(H = \{ ( 1,1 );( 1,2 );( 2,1 );( 1,4 );( 2,3 );( 3,2 );( 4,1 );( 1,6 ) ;( 2,5 ) ;( 3,4 );( 4,3 );( 5,2 );( 6,1 );( 5,6 );( 6,5 ) \}\). Suy ra \(n\left( H \right) = 15\). Vậy \(P\left( H \right) = \frac{{15}}{{36}} = \frac{5}{{12}}\).
Gieo đồng thời 3 con xúc xắc. Tìm xác suất để có 1 con xúc xắc xuất hiện số chấm bằng tích số chấm xuất hiện trên 2 con xúc xắc còn lại.
A. P = 25 216
B. P = 27 216
C. P = 24 216
D. P = 45 216
Gieo 3 con xúc xắc. Tìm xác suất để có 1 con xúc xắc xuất hiện số chấm bằng tổng số chấm xuất hiện trên 2 con xúc xắc còn lại và tổng số chấm xuất hiện bằng 12
A. p = 5 72
B. p = 1 36
C. p = 1 72
D. p = 5 36
gieo đồng thời 2 con xúc xắc cân đối . tính xác suất để số chấm xuất hiện trên 2 con xúc xắc hơn kém nhau 2 .
các trường hợp là :
3-1
4-2
5-3
6-4
=> xác suất P=4/36=1/9
gieo đồng thời 2 con xúc xắc cân đối . tính xác suất để số chấm xuất hiện trên 2 con xúc xắc hơn kém nhau 2 .
gieo đồng thời 2 con xúc xắc cân đối . tính xác suất để số chấm xuất hiện trên 2 con xúc xắc hơn kém nhau 2 .
gieo đồng thời 2 con xúc xắc cân đối . tính xác suất để số chấm xuất hiện trên 2 con xúc xắc hơn kém nhau 2 .
Gieo đồng thời hai con xúc xắc cân đối. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 4 hoặc bằng 6.
Số phần tử của không gian mẫu là \(n\left( \Omega \right) = 36\).
Gọi E là biến cố tổng số chấm xuất hiện trên hai con xúc xắc bằng 4 hoặc bằng 6. Khi đó ta có \(E = \left\{ {\left( {1,3} \right);\left( {2,2} \right);\left( {3,1} \right);\left( {1,5} \right);\left( {2,4} \right);\left( {3,3} \right);\left( {4,2} \right);\left( {5,1} \right)} \right\} \Rightarrow n\left( E \right) = 8\).
Vậy xác suất của biến cố E là \(P\left( E \right) = \frac{{n\left( E \right)}}{{n\left( \Omega \right)}} = \frac{8}{{36}} = \frac{2}{9}\).