a) Làm tính chia \(\left(x^5-7x^4+15x^2-11x+2\right)\)cho \(\left(x^2-2x+1\right)\)
b) x bằng mấy để thương phép chia bằng -10
c) x bằng mấy để thương phép chia min
a) Làm tính chia \(\left(x^5-7x^4+15x^2-11x+2\right)\)cho \(\left(x^2-2x+1\right)\)
b) x bằng mấy để thương phép chia bằng -10 c) x bằng mấy để thương phép chia mina: \(\dfrac{x^5-7x^4+15x^2-11x+2}{x^2-2x+1}\)
\(=\dfrac{x^5-2x^4+x^3-5x^4+10x^3-5x^2-11x^3+22x^2-11x-2x^2+4x-2-4x+4}{x^2-2x+1}\)
\(=\dfrac{x^3\left(x^2-2x+1\right)-5x^2\left(x^2-2x+1\right)-11x\left(x^2-2x+1\right)-2\left(x^2-2x+1\right)-4x+4}{x^2-2x+1}\)
\(=x^3-5x^2-11x-2+\dfrac{-4x+4}{x^2-2x+1}\)
b: Để thương bằng -10 thì \(x^3-5x^2-11x+8=0\)
hay \(x\in\left\{6,502;0,588;-2,091\right\}\)
C1: Xác định a, b để \(x^4-3x^2+ax+b\) chia hết cho \(x^2-3x+2\)
C2: sắp xếp các đa thức rồi đặt phép chia (chỉ cần sắp xếp giùm mk thôi còn mk tự chia)
a, \(\left(6x^6+2x^5-2+7x+x^2-15x^3-2x^4\right):\left(x+3x-1\right)\)
b, \(\left(17x^2-6x^4+5x^3-23x+7\right):\left(7-3x^2-2x\right)\)
làm nhanh giúp mk nhé mơn
C1: Gọi đa thức thương là Q(x)
Vì x^4 : x^2 = x^2
=> đa thức có dạng x^2+mx+n
Đề x^4 - 3x^2 + ax+b chia hết x^2 - 3x + 2
=> x^4 - 3x^2 + ax + b = (x^2 - 3x + 2)(x^2 + mx + n)
x^4+ 0x^3 - 3x^2 +ax+b = x^4 +mx^3 +(x^2)n -3x^3 -3mx^2 - 3xn + 2x^2 + 2mx + 2n
x^4 + 0x^3 -3x^2 + ax+b = x^4 + x^3(m-3) - x^2(3m - n -2) +x(2m - 3n) +2n
<=>| 0 = m-3 <=> | m = 3
| 3=3m-n-2 | b= 8
| a=2m-3n | n = 4
| b = 2n | a = -6
Vậy a= -6, b= 8
1.Cho A=\(\dfrac{2x+1}{\left(x-4\right)\left(x-3\right)}-\dfrac{x+3}{x-4}+\dfrac{2x+1}{x-3}\)
a.Rút gọn biểu thức A
b.Tính giá trị của A biết \(x^2+20=9x\)
2.Tìm đa thức thương vfa đa thức dư trong phép chia:\(\left(2x^3-7x^2+13x+2\right):\left(2x-1\right)\)
3.Cho hình thang ABCD có góc A = góc D = 90 độ,AB=AD=\(\dfrac{1}{2}\)CD.Gọi M là trung điểm của CD.
a.Tứ giác ABCM;ABCD là hình gì?Vì sao?
b.Cho AC cắt BD tại E, AM cắt BD tại O.Gọi N là trung điểm của MC.C/m tứ giác DOEN là hình thang cân.
c.Kẻ DI vuông góc vs AC (I thuộc AC) DI cắt AM tại H.Gọi K là giao điểm của AM và DE.C/m DH=DK
(vẽ hình giúp e vs ạ, e cảm ơn)
a) Làm phép tính \(\left(15+5x^2-3x^2-9x\right):\left(5-3x\right)\)
b) t bằng mấy để \(x^3-3x^2+t-4x⋮\left(1+x+x^2\right)\)
Bài 1 : Ko thực hiện phép chia , hãy xem phép chia sau đây có là phép chia hết ko và tìm đa thức dư trong trg hợp ko chia hết :
a) \(\left(x^3+2x^2-3x+9\right):\left(x+3\right)\)
b) \(\left(9x^4-6x^3+15x^2+2x+1\right):\left(3x^2-2x+5\right)\)
b)\(\frac{9x^4-6x^3+15x^2+2x+1}{3x^2-2x+5}=\frac{3x^2.\left(3x^2-2x+5\right)+2x+1}{3x^2-2x+5}=3x^2+\frac{2x+1}{3x^2-2x+5}\)
=> đa thức dư trong phép chia là 2x+1
\(\frac{x^3+2x^2-3x+9}{x+3}=\frac{x^3+9x^2+27x+27-7x^2-30x-18}{x+3}=\frac{\left(x+3\right)^3-7x^2-30x-18}{x+3}\)
\(\left(x+3\right)^2-\frac{7x^2+21x+9x+18}{x+3}=\left(x+3\right)^2-\frac{7x.\left(x+3\right)+9.\left(x+3\right)-9}{x+3}\)
\(=\left(x+3\right)^2-\frac{\left(7x+9\right).\left(x+3\right)-9}{x+3}=\left(x+3\right)^2-\left(7x+9\right)-\frac{9}{x+3}\)
=> đa thức dư trong phép chia là 9
p/s: t mới lớp 7_sai sót mong bỏ qua :>
TÌM GIÁ TRỊ CỦA X ĐỂ ĐA THỨC DƯ TRONG MỖI PHÉP CHIA SAU CÓ GIÁ TRỊ BẰNG 0
a) \(\left(3x^5-x^4-2x^3+x^2+4x+5\right)\div\left(x^2-2x+2\right)\)
Thực hiện phép chia đa thức ta được :
3x5 - x4 - 2x3 + x2 + 4x + 5 : ( x2 - 2x + 2 ) = ( 3x3 + 5x2 + 2x - 5 ) dư ( -10x + 15 )
Vậy để dư bằng 0 thì -10x + 15 = 0 <=> 3/2
Vậy x = 3/2
Cho 2 đa thức :
\(A\left(x\right)=2x^3+3x^2-x+a\)
\(B\left(x\right)=2x+1\)
a)Tìm đa thức thương và đa thức dư trong phép chia 2 đa thức A(x) và B(x)
b)Xác định a để đa thức A(x)luôn chia hết cho đa thức B(x)
Để \(A\left(x\right)⋮B\left(x\right)\Leftrightarrow a+1=0\)
\(\Leftrightarrow a=-1\)
Vậy ...
Tìm n \(\left(n\in\mathbb{N}\right)\) để mỗi phép chia sau đây là phép chia hết
a) \(\left(x^5-2x^3-x\right):7x^n\)
b) \(\left(5x^5y^5-2x^3y^3-x^2y^2\right):2x^ny^n\)
a: Để đây là phép chia hết thì 1-n>0
hay n<=1
mà n là số tự nhiên
nên \(n\in\left\{0;1\right\}\)
b: Để đây là phép chia hết thì 2-n>=0
hay n<=2
mà n là số tự nhiên
nên \(n\in\left\{0;1;2\right\}\)
Câu 1: Phân tích đa thức thành nhân tử
\(x^2-\left(y-3\right)^2-4x+4\)
Câu 2:
a) Thực hiện phép chia: \(\left(2x^4+8x^3+9x^2-4x-5\right):\left(2x^2-1\right)\)
b) Chứng tỏ thương của phép chia luôn luôn dương với mọi giá trị của x
\(x^2-\left(y-3\right)^2-4x+4\)
\(=x^2-\left(y^2-6y+9\right)-4x+4\)
\(=x^2-y^2+6y-9-4x+4\)
\(=\left(x^2-4x+4\right)-\left(y^2-6y+9\right)\)
\(=\left(x-2\right)^2-\left(y-3\right)^2\)
\(=\left[\left(x-2\right)-\left(y-3\right)\right]\left[\left(x-2\right)+\left(y-3\right)\right]\)
\(=\left(x-y+5\right)\left(x+y-5\right)\)
1.
x2 - ( y - 3 )2 - 4x + 4
= ( x2 - 4x + 4 ) - ( y - 3 )2
= ( x - 2 )2 - ( y - 3 )2
= [ ( x - 2 ) - ( y - 3 ) ][ ( x - 2 ) + ( y - 3 ) ]
= ( x - 2 - y + 3 )( x - 2 + y - 3 )
= ( x - y + 1 )( x + y - 5 )
2.
a) Ta có : 2x4 + 8x3 + 9x2 - 4x - 5
= 2x4 + 10x2 - x2 + 8x3 - 4x - 5
= ( 2x4 - x2 ) + ( 8x3 - 4x ) + ( 10x2 - 5 )
= x2( 2x2 - 1 ) + 4x( 2x2 - 1 ) + 5( 2x2 - 1 )
= ( 2x2 - 1 )( x2 + 4x + 5 )
=>(2x4 + 8x3 + 9x2 - 4x - 5) : ( 2x2 - 1 ) = x2 + 4x + 5
b) Ta có : x2 + 4x + 5 = ( x2 + 4x + 4 ) + 1 = ( x + 2 )2 + 1 ≥ 1 > 0 ∀ x
=> đpcm