Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
18 tháng 9 2023 lúc 11:11

a) Vì \(\widehat {{A_1}} + \widehat {{A_2}} = 180^\circ \) (2 góc kề bù)

\( \Rightarrow \widehat {{A_1}} + 40^\circ  = 180^\circ \)

\( \Rightarrow \widehat {{A_1}} = 180^\circ  - 40^\circ  = 140^\circ \)

Ta có: \(\widehat {{A_1}} = \widehat {{A_3}}\) (2 góc đối đỉnh), mà \(\widehat {{A_1}} = 140^\circ \) nên \(\widehat {{A_3}} = 140^\circ \)

\(\widehat {{A_2}} = \widehat {{B_4}}\)(2 góc đối đỉnh), mà \(\widehat {{A_2}} = 40^\circ \) nên \(\widehat {{A_4}} = 40^\circ \)

Vì \(\widehat {{A_2}} = \widehat {{B_4}} = 40^\circ \), mà 2 góc này ở vị trí so le trong

\( \Rightarrow \) 2 góc đồng vị bằng nhau nên

 \(\begin{array}{l}\widehat {{A_1}} = \widehat {{B_1}} = 140^\circ ;\widehat {{A_2}} = \widehat {{B_2}} = 40^\circ ;\\\widehat {{A_3}} = \widehat {{B_3}} = 140^\circ ;\widehat {{A_4}} = \widehat {{B_4}} = 40^\circ \end{array}\)

b) Ta có:

\(\begin{array}{l}\widehat {{A_1}} + \widehat {{B_4}} = 140^\circ  + 40^\circ  = 180^\circ \\\widehat {{A_2}} + \widehat {{B_3}} = 40^\circ  + 140^\circ  = 180^\circ \end{array}\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
18 tháng 9 2023 lúc 11:22

1. Vì MN//BC nên \(\widehat {AMN} = \widehat {ABC}\)( 2 góc đồng vị), mà \(\widehat {ABC} = 60^\circ \)nên \(\widehat {AMN} = 60^\circ \)

Vì \(\widehat {AMN} + \widehat {BMN} = 180^\circ \) (2 góc kề bù)

\(\begin{array}{l} \Rightarrow 60^\circ  + \widehat {BMN} = 180^\circ \\ \Rightarrow \widehat {BMN} = 180^\circ  - 60^\circ  = 120^\circ \end{array}\)

Vì \(\widehat {ANM} + \widehat {MNC} = 180^\circ \)(2 góc kề bù)

\(\begin{array}{l} \Rightarrow \widehat {ANM} + 150^\circ  = 180^\circ \\ \Rightarrow \widehat {ANM} = 180^\circ  - 150^\circ  = 30^\circ \end{array}\)

Vì MN//BC nên \(\widehat {ANM} = \widehat {ACB}\) ( 2 góc đồng vị), mà \(\widehat {ANM} = 30^\circ \)nên \(\widehat {ACB} = 30^\circ \).

2. Vì xx’//yy’ nên \(\widehat {x'AB} = \widehat {ABy}\)( 2 góc so le trong)

Mà zz’\( \bot \) xx’ nên \(\widehat {x'AB} = 90^\circ \)

Do đó, \(\widehat {ABy} = 90^\circ \) nên zz’ vuông góc với yy’.

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
19 tháng 9 2023 lúc 22:38

a) Ta có: \(\widehat {PAM} = \widehat {QAN}\) ( 2 góc đối đỉnh) , mà \(\widehat {PAM} = 33^\circ \)nên \(\widehat {QAN} = 33^\circ \)

Vì \(\widehat {PAN} + \widehat {PAM} = 180^\circ \) ( 2 góc kề bù) nên \(\widehat {PAN} + 33^\circ  = 180^\circ  \Rightarrow \widehat {PAN} = 180^\circ  - 33^\circ  = 147^\circ \)

Vì \(\widehat {PAN} = \widehat {QAM}\)( 2 góc đối đỉnh) , mà \(\widehat {PAN} = 147^\circ \) nên \(\widehat {QAM} = 147^\circ \)

b)

Vì At là tia phân giác của \(\widehat {PAN}\) nên \(\widehat {PAt} = \widehat {tAN} = \frac{1}{2}.\widehat {PAN} = \frac{1}{2}.147^\circ  = 73,5^\circ \)

Vì \(\widehat {tAQ} + \widehat {PAt} = 180^\circ \) ( 2 góc kề bù) nên \(\widehat {tAQ} + 73,5^\circ  = 180^\circ  \Rightarrow \widehat {tAQ} = 180^\circ  - 73,5^\circ  = 106,5^\circ \)

Vẽ At’ là tia đối của tia At, ta được \(\widehat {QAt'} = \widehat {PAt}\)( 2 góc đối đỉnh)

Ta có: \(\widehat {QAt'} = \widehat {MAt'} = \frac{1}{2}.\widehat {MAQ}\) nên At’ là tia phân giác của \(\widehat {MAQ}\)

Chú ý:

2 tia phân giác của 2 góc đối đỉnh là 2 tia đối nhau

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
18 tháng 9 2023 lúc 11:25

Vì Ax // Dy, mà AD \( \bot \) Ax nên AD \( \bot \) Dy. Do đó, \(\widehat{ADC}=90^0\)

Vì Ax // Dy nên \(\widehat {ABC} = \widehat {BCy}\) ( 2 góc so le trong), mà \(\widehat {BCy} = 50^\circ  \Rightarrow \widehat {ABC} = 50^\circ \)

Vậy \(\widehat{ADC}=90^0; \widehat {ABC} = 50^\circ \)

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
18 tháng 9 2023 lúc 11:19

Hai đường thẳng chứa hai tia Ax và By có song song với nhau. Vì \(\widehat {xAB} = \widehat {yBA}( = 60^\circ )\), mà hai góc này ở vị trí so le trong nên Ax // By (Dấu hiệu nhận biết 2 đường thẳng song song).

Quoc Tran Anh Le
Xem chi tiết
Kiều Vũ Linh
18 tháng 9 2023 lúc 18:09

loading...  Vẽ tia Oy' là tia đối của tia Oy

Ta có:

∠xOy + ∠xOy' = 180⁰ (kề bù)

⇒ ∠xOy' = 180⁰ - ∠xOy

= 180⁰ - 120⁰

= 60⁰

Lại có:

∠zOy + ∠zOy' = 180⁰ (kề bù)

⇒ ∠zOy' = 180⁰ - ∠zOy

= 180⁰ - 110⁰

= 70⁰

⇒ ∠zOx = ∠zOy' + ∠xOy'

= 70⁰ + 60⁰

= 130⁰

Hà Quang Minh
18 tháng 9 2023 lúc 18:02

Kẻ Ot là tia đối của tia Oy.

Ta được:+) \(\widehat {{O_1}} + \widehat {xOy} = 180^\circ \) ( 2 góc kề bù)

\(\begin{array}{l} \Rightarrow \widehat {{O_1}} + 120^\circ  = 180^\circ \\ \Rightarrow \widehat {{O_1}} = 180^\circ  - 120^\circ  = 60^\circ \end{array}\)

+) \(\widehat {{O_2}} + \widehat {yOz} = 180^\circ \)( 2 góc kề bù)

Vì Ot nằm giữa 2 tia Ox và Oz nên \(\widehat {xOz} = \widehat {{O_1}} + \widehat {{O_2}} = 60^\circ  + 70^\circ  = 130^\circ \)

Vậy \(\widehat {zOx} = 130^\circ \)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
18 tháng 9 2023 lúc 11:08

Vì góc AMD và BMD là hai góc kề bù nên

\(\begin{array}{l}\widehat {AMD} + \widehat {BMD} = 180^\circ \\ \Rightarrow 45^\circ  + \widehat {BMD} = 180^\circ \\ \Rightarrow \widehat {BMD} = 180^\circ  - 45^\circ  = 135^\circ \end{array}\)

Vậy \(\widehat {DMB} = 135^\circ \)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
26 tháng 9 2023 lúc 23:58

Ta có hai góc \(\widehat {xOz}\) và \(\widehat {tOy}\) đối đỉnh nên \(\widehat {xOz} = \widehat {tOy} = 38^\circ \)

hai góc \(\widehat {xOt}\) và \(\widehat {yOz}\) đối đỉnh nên \(\widehat {xOt} = \widehat {yOz}\)

\(\widehat {xOz}\) và \(\widehat {xOt}\) bù nhau nên \(\widehat {xOt} = 180^\circ  - \widehat {xOz} = 180^\circ  - 38^\circ  = 142^\circ \)

Vậy \(\widehat {xOz} = \widehat {tOy} = 38^\circ \) và \(\widehat {xOt} = \widehat {yOz} = 142^\circ \)

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
17 tháng 9 2023 lúc 21:16

Tam giác ABC và tam giác MNP bằng nhau (có ba cặp cạnh bằng nhau: AB = MN, BC = NP, AC = MP). Nên các cặp góc tương ứng trong hai tam giác này bằng nhau: \(\widehat A = \widehat M,\widehat B = \widehat N,\widehat C = \widehat P\).

Vậy \(\widehat A = \widehat M = 65^\circ \); \(\widehat B = \widehat N = 71^\circ \); \(\widehat C = \widehat P = 180^\circ  - 65^\circ  - 71^\circ  = 44^\circ \)(vì tổng ba góc trong một tam giác bằng 180°).