1) tìm số dương x và y để 4 số 1; x; 9; y lập thành 1 cấp số nhân
2) tìm số âm a và b để 4 số 3; a; 12; 1 + b lập thành 1 cấp số nhân
1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố
2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố
3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương
4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p
5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab +c ( a + b )
Chứng minh: 8c + 1 là số cp
6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3
Chứng minh: 9x – 1 là lập phương đúng
7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c
8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1
Chứng minh: ( x + y )^2 + ( xy – 1 )^2 không phải là số cp
9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2
10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương
11, Cho các số nguyên n thuộc Z, CM:
A = n^5 - 5n^3 + 4n \(⋮\)30
B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ
C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42
Gỉa sử x,y là các số dương thỏa mãn đẳng thức x+y=\(\sqrt{10}\). Tìm giá trị của x và y để biểu thức P=\(\left(x^4+1\right)\left(y^4+1\right)\) đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất ấy.
TK: Tìm Min (x^4 + 1) (y^4 + 1) với x + y = căn10 ; x , y > 0 - Thanh Truc
Tìm x,y là số nguyên dương để x+1 chia hết cho y và y+1 chia hết cho x.
Tìm x,y là số nguyên dương để x+1 chia hết cho y và y+1 chia hết cho x.
Bạn Lê Chí Cường giải thiếu kết quả: x=y=1
x=2, y=3
x=3, y=2
Tìm hai số nguyên dương x, y biết 1/x + 1/y = 1/4 và x < y
Ta có: 1/4 = 3/12
Mà 3 = 1 + 2
Vậy 3/12 = 1/12 + 2/12
Rút gọn ra đáp án: 1/4 = 1/12 + 1/6
1. Cho 2 phân số:Y=3n+1/4 và B=18/(n+1)
a, tìm n là số nguyên để YxB là số nguyên dương
b, tìm n để tích hai phân số đã cho bằng -4/1/2.
2. Tìm một bộ 3 số nguyên tố biết rằng trong đó có một số bằng 10% tổng cả 3 số cần tìm.
3. Tìm số dư khi chia 20^10^2013 cho 33.
4. Tìm x,y biết 2^x+3=y^2.
Gọi A là giao điểm của 2 đường thẳng y=-x+1 và y=x+3. Tìm số nguyên dương m để A thuộc đồ thị hàm số y = (m-1)x+m^2-1
Pt hoành độ giao điểm:
\(-x+1=x+3\Rightarrow2x=-2\)
\(\Rightarrow x=-1\Rightarrow y=x+3=2\)
\(\Rightarrow A\left(-1;2\right)\)
Để A thuộc \(y=\left(m-1\right)x+m^2-1\) thì:
\(-1.\left(m-1\right)+m^2-1=2\)
\(\Leftrightarrow m^2-m-2=0\Rightarrow\left[{}\begin{matrix}m=-1\left(loại\right)\\m=2\end{matrix}\right.\)
Giả sử x, y là các số dương thỏa mãn đẳng thức x + y = (căn bậc hai của 10). Tìm giá trị của x và y để biểu thức P = (x^4 + 10(y^4 + 1) đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất ấy