Cho a, b là 2 số nguyên dương sao cho A = a2 + b2/a.b + 1 là số nguyên.CMR A là số chính phương
1.Cho a,b,c là các số nguyên tố thoả mãn: ab + 1 = c. CMR: a2+ c hoặc b2+ c là số chính phương
2.Cho m,n là các số nguyên dương thoả mãn: m2+n2+m⋮mn. CMR: m là một số chính phương
Cho a và b là những số nguyên dương thỏa mãn ab + 1 chia hết cho a2 + b2 . Hãy chứng minh rằng: a2 + b2 / ab + 1 là bình phương của một số nguyên.
Để \(\frac{2a+2b}{ab+1}\) là bình phương của 1 số nguyên thì 2a + 2b chia hết cho ab + 1; mà ab + 1 chia hết cho 2a + 2b => ab + 1 = 2b + 2a
=> \(\frac{2a+2b}{ab+1}\)=1 = 12
Cho (a;b)=1 và a.b=c^2 (c là số nguyên dương) .CMR: a và b là số chính phương
helppppp
Nếu a,b ko là số chính phương thì a,b phải có ít nhất 1 ước nguyên tố chung. Vì nếu a,b không có ước nguyên tố chung mà a,b lại ko là số chính phương thì tích của chúng không thể là số chính phương
Mà đề bài cho (a,b)=1 =>a,b phải là số chính phương
cho ƯCLN(a;b)=1 và a.b = c^2 ( c là số nguyên dương). CMR a,b là số chính phương.
Cho các số nguyên dương a,b,c thoả mãn đẳng thức: a+b=b(a-c) và c+1 là bình phương của 1 số nguyên tố. Chứng minh ít nhất 1 trong 2 số: a+b và a.b là số chính phương.
Giải cho mik đi pls đó
cho 69 số nguyên dương phân biệt sao cho mỗi số ko vượt quá 100. chứng tỏ rằng có thể chọn ra 4 số phân biệt là a, b, c, d từ 69 số đã cho sao cho tổng a2 + b2 + c2 + d2 là tổng của 3 số chính phưởng phân biệt khác 0.
cho 69 số nguyên dương phân biệt sao cho mỗi số ko vượt quá 100. chứng tỏ rằng có thể chọn ra 4 số phân biệt là a, b, c, d từ 69 số đã cho sao cho tổng a2 + b2 + c2 + d2 là tổng của 3 số chính phưởng phân biệt khác 0
cho 69 số nguyên dương phân biệt sao cho mỗi số ko vượt quá 100. chứng tỏ rằng có thể chọn ra 4 số phân biệt là a, b, c, d từ 69 số đã cho sao cho tổng a2 + b2 + c2 + d2 là tổng của 3 số chính phưởng phân biệt khác 0.
mau lên mink cần lời giải gấp
cho a,b,c là số nguyên
ab+bc+ac=1
CMR: (a2+1)(b2+1)(c2+1) là một số chính phương