Cho tam giác ABC vuông tại A . Đường cao AH=6 . \(\frac{AB}{AC}=\frac{3}{7}\). Tính BH , CH
VẼ HÌNH VÀ TRÌNH BÀY CÁCH LÀM NỮA NHA
Bài 1: Cho tam giác ABC cân tại B, kẻ CH vuông góc AB. Biết AH= 1cm, BH= 4cm. Tính độ dài AC.
Bài 2: Cho tam giác ABC vuông tại A. Cạnh AB= 5cm đường cao AH, BH= 3cm, CH= 8cm. Tính AC.
Bài 3: Cho tam giác ABC vuông tại A, có \(\frac{AB}{BC}=\frac{3}{5}\)và AC= 16cm. Tính độ dài các cạnh AB=BC.
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
1) a. cho tam giác ABC vuong tại A . AB = 7 , AC =9 . Đường cao AH . TÍNH BC và AH
b. cho tam giác ABC vuông tại A .AB = AC. Đường cao AH . BH = CH. AH =5 . Tính AB ,AC ,BH ,CH
VẼ HÌNH HƠI XẤU THÔNG CẢM NHA
áp dụng hệ thức lượng trong tam giác vuông ABC ta có \(AB\cdot AC=AH\cdot BC\) \(\Rightarrow AH\cdot BC=63\) (1)
áp dụng đl pitagovao tam giác vuông ABC ta có \(AB^2+AC^2=BC^2\Rightarrow BC=\sqrt{130}\)
thay vao (1) ta co \(AH\cdot BC=63\Rightarrow AH=\frac{63}{\sqrt{130}}\)
Cho tam giác ABC vuông tại A, đường cao AH, biết BH=10cm, CH=42cm. Tính cạnh BC, AH, AB và AC ( vẽ hình giúp )
Cho tam giác ABC vuông tại A có đường cao AH. Biết \(\frac{AB}{AC}\)=\(\frac{3}{4}\)và BC=15cm. Tính AB, AC, AH, BH,CH
Giúp mình với nha mọi người!!!!
Cho tam giác vuông ABC có \(\frac{AB}{AC}=\frac{3}{4}\); góc A = 90o; BC = 125cm; AH là đường cao của tam giác. Hãy tính CH, BH ( bằng 3 cách)
** Mình giải được một cách tính theo hệ thức lượng trong tam giác vuông rồi. Còn 2 cách nữa mọi người giúp mình nhá!!!
Vẽ tam giác ABC vuông tại A, đường cao AH. Tính BC, AH, BH, CH, \(\cos B,\cos C,\sin B,\sin C\). Biết AB = 6 cm, \(\frac{AC}{AB}=\sqrt{3}\)
a: Đặt HB=x; HC=y(Điều kiện: x>0 và y>0)
Xét ΔABC có AB<AC
mà HB,HC lần lượt là hình chiếu của AB,AC trên BC
nên HB<HC
mà HB+HC=BC=25
nên \(HB< \dfrac{25}{2}=12,5;HC>12,5\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(HB\cdot HC=12^2=144\)
mà HB+HC=25
nên HB,HC lần lượt là các nghiệm của phương trình sau:
\(x^2-25x+144=0\)
=>\(x^2-9x-16x+144=0\)
=>x(x-9)-16(x-9)=0
=>(x-9)(x-16)=0
=>\(\left[{}\begin{matrix}x=9\\x=16\end{matrix}\right.\)
mà BH<HC
nên BH=9cm; CH=16cm
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{9\cdot25}=15\left(cm\right)\\AC=\sqrt{16\cdot25}=20\left(cm\right)\end{matrix}\right.\)
b: ΔABC vuông tại A có AM là đường trung tuyến
nên \(AM=\dfrac{BC}{2}=12,5\left(cm\right)\)
Xét ΔAHM vuông tại H có
\(sinAMH=\dfrac{AH}{AM}=\dfrac{12}{12,5}=\dfrac{24}{25}\)
=>\(\widehat{AMH}\simeq73^044'\)
c: ΔAHM vuông tại H
=>\(AH^2+HM^2=AM^2\)
=>\(HM^2=12,5^2-12^2=12,25\)
=>HM=3,5(cm)
\(S_{HAM}=\dfrac{1}{2}\cdot HA\cdot HM=\dfrac{1}{2}\cdot3,5\cdot12=6\cdot3,5=21\left(cm^2\right)\)
cho tam giác vuông (A=90) đường cao AH=6.Biết \(\frac{AB}{AC}=\frac{3}{7}\)Tính BH,CH
BT1: Cho tam giác ABC vuông tại A ,đường cao AH, biết AB= 12cm, BH= 6cm.Tính AH,AC,BC,CH.
BT2: Cho tam giác ABC vuông tại A ,đường cao AH, biết \(\frac{HB}{HC}\)=\(\frac{3}{4}\). Tính AB,AC,BC.
Giair giúp mik với ạ