Bài 2 : Cho x , y thuộc R thỏa mãn : x + y = -2
Tìm GTNN của A = 2 . ( x3 + y3 ) -15xy +7
Bài 1 : Cho x , y thuộc R . Tìm GTLN
P = 2 - 5x2 - y2 - 4xy + 2x
Bài 2 : Cho x , y thuộc R thỏa mãn : x + y = -2
Tìm GTNN của A = 2 . ( x3 + y3 ) -15xy +7
Bài 1:
\(P=2-5x^2-y^2-4xy+2x=3-\left(1-2x+x^2\right)-\left(4x^2+4xy+y^2\right)=3-\left(1-x\right)^2-\left(2x+y\right)^2\)
\(\Rightarrow GTLN=3\Leftrightarrow\hept{\begin{cases}1-x=0\\2x+y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)
Bài 1 : Cho x , y thuộc R . Tìm GTLN
P = 2 - 5x2 - y2 - 4xy + 2x
Bài 2 : Cho x , y thuộc R thỏa mãn : x + y = -2
Tìm GTNN của A = 2 . ( x3 + y3 ) -15xy +7
Cho x+y=-2. Tìm GTNN của S=2(x3+y3)-15xy+7
Cho x+y=-2. Tìm GTNN của S=2(x3+y3)-15xy+7
Cho các số thực dương x, y, z thỏa mãn x3 + y3 + z3 = 24. Tìm GTNN của biểu thức
\(M=\dfrac{xyz+2\left(x+y+z\right)^2}{xy+yz+zx}-\dfrac{8}{xy+yz+zx+1}\)
1.cho x,y,z thuộc R thỏa mãn x+y+z+xy+xz+yz=6. Tìm GTNN của : x^2+y^2+z^2
2. cho x,y>0 thỏa mãn x+1/y<=1. tìm GTNN: A=x/y+y/x
cho x,y>0 thỏa mãn \(2\sqrt{xy}+\sqrt{\dfrac{x}{3}}=1\).Tìm GTNN của P=\(\dfrac{y}{x}+\dfrac{4x}{3y}+15xy\)
\(P=\dfrac{y}{x}+\dfrac{x}{y}+\left(\dfrac{x}{3y}+3xy+\dfrac{1}{3}+\dfrac{1}{3}\right)+12\left(xy+\dfrac{1}{9}\right)-2\)
\(P\ge2\sqrt{\dfrac{xy}{xy}}+4\sqrt[4]{\dfrac{3x^2y}{27y}}+12.2\sqrt{\dfrac{xy}{9}}-2\)
\(P\ge4\sqrt{\dfrac{x}{3}}+8\sqrt{xy}=4\left(2\sqrt{xy}+\sqrt{\dfrac{x}{3}}\right)=4\)
\(P_{min}=4\) khi \(x=y=\dfrac{1}{3}\)
Tìm x, y thuộc Z thỏa mãn : x3+2x2+3x+2=y3.
Tìm x, y thuộc Z thỏa mãn : x3+2x2+3x+2=y3.