Tìm x để Q < 0 ; tìm Qmin
Cho đa thức \(Q\left(x\right)=-x^8+x^5-x^2+x-1\)
a, Tìm \(x\in Z\)để Q(x) = 0
b, Tìm x để Q(x) = 0
A/X=0
B/X=0
Bài 1 : Cho phân số A= \(\frac{x-2}{x-6}\). Tìm x để A có giá trị âm
Bài 2 : Cho phân số A = \(\frac{x-5}{x-7}\)
a, Tìm x để A = 0
b, Tìm x để A > 0
c, Tìm x để A < 0
b1: cho phân thức:
P= (x+1/ x-1 + 2/ x^2-1 - x/ x+1 ) * x-1/ x+2
a, tìm ĐKXĐ
b, rút gọn
c, tính giá trị của P biết x^2 - 3x = 0
d, tìm x nguyên để P nhận giá trị nguyên
b2: cho phân thức:
Q= x^2+2x/2x+10 + x-5/x + 50-5x/2x(x+5)
a, tìm ĐKXĐ
b, tìm x để Q=0; Q=1/4
c,tìm x để Q>0; Q<0
ĐKXĐ: \(x\ne\pm1;-2\)
\(P=\left(\frac{x+1}{x-1}+\frac{2}{x^2-1}-\frac{x}{x+1}\right).\frac{x-1}{x+2}\)
\(=\left(\frac{\left(x+1\right)^2}{\left(x-1\right).\left(x+1\right)}+\frac{2}{\left(x-1\right).\left(x+1\right)}-\frac{x\left(x-1\right)}{\left(x-1\right).\left(x+1\right)}\right).\frac{x-1}{x+2}\)
\(=\left(\frac{x^2+2x+1}{\left(x-1\right).\left(x+1\right)}+\frac{2}{\left(x-1\right).\left(x+1\right)}-\frac{x^2-x}{\left(x-1\right).\left(x+1\right)}\right).\frac{x-1}{x+2}\)
\(=\left(\frac{x^2+2x+1+2-x^2+x}{\left(x-1\right).\left(x+1\right)}\right).\frac{x-1}{x+2}\)
\(=\frac{3x+3}{\left(x-1\right).\left(x+1\right)}.\frac{x-1}{x+2}=\frac{3.\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}.\frac{x-1}{x+2}=\frac{3}{x+2}\)
c. \(x^2-3x=0\Leftrightarrow x.\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Nếu x=0 thì: \(P=\frac{3}{x+2}=\frac{3}{0+2}=\frac{3}{2}\)
Nếu x=3 thì: \(P=\frac{3}{x+2}=\frac{3}{3+2}=\frac{3}{5}\)
d. Ta có: \(P=\frac{3}{x+2}\inℤ\)
Vì \(x\inℤ\Rightarrow x+2\inℤ\Rightarrow x+2\inƯ\left\{3\right\}\Rightarrow x+2\in\left\{\pm1;\pm3\right\}\Leftrightarrow x\in\left\{-3;-1;1;-5\right\}\)
Kết hợp ĐKXĐ \(\Rightarrow x\in\left\{-3;-5\right\}\)
Cho A=x.\(\left(x-\frac{1}{2}\right)\)
a, Tìm x để A=0
b, Tìm x để A>0
c,Tìm x để A<0
a, Để A = 0 thì x = 0 hoặc \(\left(x-\frac{1}{2}\right)\)= 0 => x = 0 hoặc x = 0,5
b, Để A > 0 thì x > 0 và \(\left(x-\frac{1}{2}\right)\)> 0 hoặc x < 0 và \(\left(x-\frac{1}{2}\right)\)< 0
=> x > 0 và x > 0,5 hoặc x < 0 và x < 0,5
c,a, Để A < 0 thì x > 0 và \(\left(x-\frac{1}{2}\right)\)< 0 hoặc x < 0 và \(\left(x-\frac{1}{2}\right)\)> 0 mà x > \(\left(x-\frac{1}{2}\right)\) => x > 0 và x < 0,5
Cho biểu thức \(P=\dfrac{x^2+2x}{2x+10}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)
a, Tìm điều kiện của x để giá trị của phân thức xác định
b, Tìm x để P = 0
c, Tìm x để \(P=-\dfrac{1}{4}\)
d, Tìm x để P > 0 ; P < 0
a) P xác định \(\Leftrightarrow\hept{\begin{cases}x\ne0\\x+5\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}}\)
Vậy P xác định \(\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)
b) \(P=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
\(P=\frac{x\left(x+2\right)}{2\left(x+5\right)}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
\(P=\frac{x^2\left(x+2\right)}{2x\left(x+5\right)}+\frac{\left(x-5\right)\left(x+5\right)2}{2x\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}\)
\(P=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)
\(P=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}\)
Có: \(P=0\)
\(\Rightarrow P=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}=0\Leftrightarrow x\left(x^2+4x-5\right)=0\Leftrightarrow x^2+4x-5=0\)
\(\Leftrightarrow\left(x^2-x\right)+\left(5x-5\right)=0\)
\(\Leftrightarrow x\left(x-1\right)+5\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)
Vậy \(P=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)
M = \(\frac{x^2+2x}{2x+10}\)+\(\frac{x-5}{x}\)+\(\frac{50-5x}{2x\left(x+5\right)}\)
a, tìm đkxđ và rút gọn M
b , tìm x để M = 0 , M=1/4
c, tìm x để M >0 , M<0
\(Q=\frac{x-2}{x+2}\)
Tìm x để Q >0 và Q < 0
Để Q > 0 \(\Leftrightarrow\frac{x-2}{x+2}>0\Leftrightarrow x-2>0\Leftrightarrow x>2\)
<=> x > 2
Để Q < 0 \(\Leftrightarrow\frac{x-2}{x+2}< 0\Leftrightarrow x-2< 0\Leftrightarrow x< 2\)
<=> x < 2
Để Q > 0 thì \(\frac{x-2}{x+2}>0\)
\(\Rightarrow x-2>x+2\)
Cho biểu thức :B=\(\frac{x^2+2x}{2x+10}\)+\(\frac{x-5}{x}\)+\(\frac{50-5x}{2x\left(x+5\right)}\)
a)Tìm điều kiện xác định của B?
b)Tìm x để B=0;B=\(\frac{1}{4}\)
c)Tìm x để B>0;B<0?
Bài 2. Cho biểu thức \(P=1+\frac{x-3}{x^2+5x+6}\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\).
a) Rút gọn P.
b) Tìm x để P = 0
c) Tìm x để P = 1
d) Tìm x để P > 0
Bài 3: Tìm m để các phương trình sau là phương trình bậc nhất ẩn x
a) (m - 4)x + 2 – m = 0
b) (m2 – 4) x – m =0
c) \(\frac{m-2}{m-1}x+5=0\)
d) \(\left(m+1\right)x^2+x-1=0\)
ĐKXĐ:\(x\ne\pm2;x\ne-3;x\ne0\)
\(P=1+\frac{x-3}{x^2+5x+6}\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)
\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left[\frac{8x^2}{4x^2\left(x-2\right)}-\frac{3x}{3\left(x^2-4\right)}-\frac{1}{x+2}\right]\)
\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left(\frac{2}{x-2}-\frac{x}{x^2-4}-\frac{1}{x+2}\right)\)
\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left[\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right]\)
\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\cdot\frac{2x+4-x-x+4}{\left(x-2\right)\left(x+2\right)}\)
\(=1+\frac{8\left(x-3\right)}{\left(x+2\right)^2\left(x+3\right)\left(x-2\right)}\)
Đề sai à ??