tìm tất cả các giá trị X biết:
4(x-3) = x^2 - 3x
\(x\left(3x-2\right)-3x^2=\dfrac{3}{4}\)
\(\Leftrightarrow3x^2-2x-3x^2=\dfrac{3}{4}\)
\(\Leftrightarrow-2x=\dfrac{3}{4}\)
\(\Leftrightarrow x=\dfrac{3}{4}:\left(-2\right)\)
\(\Leftrightarrow x=-\dfrac{3}{8}\)
tìm tất cả các giá trị nguyên của x để P= x^4+x^3-3x-1/x^2+x+1 nhận giá trị là số nguyên
\(P=\dfrac{x^4+x^3-3x-1}{x^2+x+1}=\dfrac{\left(x^2-1\right)\left(x^2+x+1\right)-2x}{x^2+x+1}=x^2-1-\dfrac{2x}{x^2+x+1}\)
Vì x \(\in Z\) nên để P \(\in Z\) thì : \(\dfrac{x}{x^2+x+1}\in Z\)
Đặt \(A=\dfrac{x}{x^2+x+1}\) . Với x = 0 ; ta có : \(P=-1\in Z\)
Với x khác 0 ; ta có : \(A=\dfrac{1}{x+\dfrac{1}{x}+1}\)
Nếu x > 0 ; ta có : \(0< A\le\dfrac{1}{3}\) ( vì \(x+\dfrac{1}{x}\ge2\) ) => Ko tồn tại g/t nguyên của A (L)
Nếu x < 0 ; ta có : \(x+\dfrac{1}{x}\le-2\) \(\Rightarrow x+\dfrac{1}{x}+1\le-1\)
Suy ra : \(0>A\ge\dfrac{1}{-1}=-1\) \(\Rightarrow A=-1\)
" = " \(\Leftrightarrow x+\dfrac{1}{x}=-2\Leftrightarrow x=-1\)
x = -1 ; ta có : P = 2 \(\in Z\) (t/m)
Vậy ...
Tìm tất cả giá trị của x sao cho x^2 - 2xy + y^2 + 3x - 3y - 4 = 0 biết y = 3
\(x^2-2xy+y^2+3x-3y-4=0\)
\(\Leftrightarrow\left(x-y\right)^2+3\left(x-y\right)-4=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-y+3\right)-4=0\)
Thay y = 3 vào biểu thức trên ta được :
\(x\left(x-3\right)-4=0\)
\(\Leftrightarrow x^2-3x-4=0\Leftrightarrow\left(x-4\right)\left(x+1\right)=0\Leftrightarrow x=4;x=-1\)
Vậy với y = 3 thì x = 4 ; x = -1
Thay y = 3 vào bthuc ta được :
x2 - 6x + 9 + 3x - 9 - 4 = 0
<=> x2 - 3x - 4 = 0
<=> ( x + 1 )( x - 4 ) = 0
<=> x = -1 hoặc x = 4
Bài 1: Giải phương trình sau:
\(2x^2+5+2\sqrt{x^2+x-2}=5\sqrt{x-1}+5\sqrt{x+2}\)
Bài 2: Cho biểu thức
\(P=\left(\frac{6x+4}{3\sqrt{3x^2}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^2}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Tìm ĐKXĐ và rút gọn biểu thức P
b) Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị nguyên
Bài 3: Cho biểu thức
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm tất cả các giá trị nguyên của x để biểu thức A có giá trị nguyên
Tìm tất cả các giá trị của x để nhị thức - 3 x + 2 nhận giá trị dương.
A. x < 3 2
B. x < 2 3
C. x < - 3 2
D. x > 2 3
Cho hai biểu thức A = x + 2 x − 5 và B = 3 x + 5 + 20 − 2 x x − 25 với x ≥ 0 , x ≠ 25
3) Tìm tất cả các giá trị của x để A = B . x − 4 .
Với x ≥ 0 , x ≠ 25 Ta có: A = B . x − 4
⇔ x + 2 x − 5 = 1 x − 5 . x − 4 ⇔ x + 2 = x − 4 ( * )
Nếu x ≥ 4 , x ≠ 25 thì (*) trở thành : x + 2 = x − 4
⇔ x − x − 6 = 0 ⇔ x − 3 x + 2 = 0
Do x + 2 > 0 nên x = 3 ⇔ x = 9 (thỏa mãn)
Nếu 0 ≤ x < 4 thì (*) trở thành : x + 2 = 4 − x
⇔ x + x − 2 = 0 ⇔ x − 1 x + 2 = 0
Do x + 2 > 0 nên x = 1 ⇔ x = 1 (thỏa mãn)
Vậy có hai giá trị x=1 và x= 9 thỏa mãn yêu cầu bài toán
1,Tìm tất cả các giá trị của m để hàm số y=2x^2 - 3mx + m - 2 trên x-1 đạt cực đại tại điểm x=2. 2, Tìm tất cả các giá trị của m để hàm số y= x^2 + mx +1 trên x+m đạt cực tiểu tại điểm x=2. 3, Tìm tất cả các giá trị của m để hàm số y=x^2 -(2m-1)x+3 trên x+2 có cực đại và cực tiểu . 4, Tìm m để hso y=x^2 +m(m^2-1)x-m^4+1 trên x-m có cực đại và cực tiểu. Mọi người giúp em với ạ . Em cảm ơn ạ !
Biết rằng trong tất cả các cặp (x; y) thỏa mãn: log 2 x 2 + y 2 + 2 ≤ log 2 x + y - 1 . Chỉ có duy nhất một cặp (x; y) thỏa mãn: 3x + 4y - m = 0 . Khi đó hãy tính tổng tất cả các giá trị m tìm được?
A. 20
B. 46
C. 28
D. 14
nên đường thẳng 3x + 4y - m = 0 là tiếp tuyến của đường tròn (x – 2)2 + (y – 2)2 = 2.
Chọn C.
Câu 3: Tìm tất cả các giá trị của tham số m để hàm số \(y=x^3-3x^2+mx+1\) đạt cực tiểu tại x=2