cmr: Nếu a = b => a/b = a+m/b+m
Cho a,b,c>0 thỏa mãn \(a^2=b^2+c^2\). CMR
a) \(a^m>b^m+c^m\) nếu m>2
b) \(a^m< b^m+c^m\) nếu m<2
Sử dụng tính đơn điệu của hàm mũ: hàm \(y=a^x\) nghịch biến khi \(0< a< 1\) và đồng biến khi \(a>1\)
\(a^2=b^2+c^2\Rightarrow\left(\dfrac{b}{a}\right)^2+\left(\dfrac{c}{a}\right)^2=1\)
\(\Rightarrow\left\{{}\begin{matrix}0< \dfrac{b}{a}< 1\\0< \dfrac{c}{a}< 1\end{matrix}\right.\) nên các hàm \(\left(\dfrac{b}{a}\right)^x\) và \(\left(\dfrac{c}{a}\right)^x\) đều nghịch biến
Xét: \(\dfrac{b^m+c^m}{a^m}=\left(\dfrac{b}{a}\right)^m+\left(\dfrac{c}{a}\right)^m\) \(\)
- Khi \(m>2\Rightarrow\left(\dfrac{b}{a}\right)^m< \left(\dfrac{b}{a}\right)^2\) và \(\left(\dfrac{c}{a}\right)^m< \left(\dfrac{c}{a}\right)^2\)
\(\Rightarrow\left(\dfrac{b}{a}\right)^m+\left(\dfrac{c}{a}\right)^m< \left(\dfrac{b}{a}\right)^2+\left(\dfrac{c}{a}\right)^2=1\)
Hay \(\dfrac{b^m+c^m}{a^m}< 1\) \(\Rightarrow a^m>b^m+c^m\)
Câu b c/m tương tự, \(m< 2\) thì \(\left(\dfrac{b}{a}\right)^m>\left(\dfrac{b}{a}\right)^2...\)
cho phân số a/b (a,b thuộc N, b khác 0)CMR :
a,Nếu a/b <1 thì a/b < a+m/b+m
b, Nếu a/b>1 thì a/b>a+m/b+m
Lời giải:
a.
$\frac{a}{b}<1\Rightarrow a< b\Rightarrow a-b<0$
Xét hiệu $\frac{a}{b}-\frac{a+m}{b+m}=\frac{am-bm}{b(b+m)}=\frac{m(a-b)}{b(b+m)}<0$ do $a-b<0$ và $a,b,m$ là số tự nhiên $>0$
$\Rightarrow \frac{a}{b}<\frac{a+m}{b+m}$
b.
$\frac{a}{b}>1\Rightarrow a> b\Rightarrow a-b>0$
Xét hiệu $\frac{a}{b}-\frac{a+m}{b+m}=\frac{am-bm}{b(b+m)}=\frac{m(a-b)}{b(b+m)}>0$ do $a-b>0$ và $a,b,m$ là số tự nhiên $>0$
$\Rightarrow \frac{a}{b}>\frac{a+m}{b+m}$
CMR nếu a chia hết b thì a mũ m chia hết cho b mũ m ( a,b,m thuộc N )
Cho M=(-a+b)-(b+c-a)+(c-a). CMR nếu a<0 thì M>0.
Ta có M = - a + b - b - c + a + c - a
= ( - a + a ) + ( b - b ) + ( - c + c ) - a
= 0 + 0 + 0 - a
= - a
Vì a < 0 => - a > 0
=> M > 0
Cho M=(-a+b)-(b+c-a)+9c-a)
CMR nếu a<0 thì M>0
cho a,b,c,d tỉ lệ với các số m,m+n,m+2n. CMR nếu khác 0 thì ta có 4(a-b)(b-c)=(c-a)^2
Giả sử x=a/m; y=b/m (a;b;m thuộc Z;m khác 0 ) và x<y. CMR nếu chọn z=a+b/2m thì ta có x<z<y
Giả sử x=a/m; y=b/m (a;b;m thuộc Z;m khác 0 ) và x<y. CMR nếu chọn z=a+b/2m thì ta có x<z<y
x=a/m;y=b/m;x<y nên a<b
nên a+a<a+b
nên 2a/2m<a+b
nên x<z
tương tự có z<y
do đó x<z<y
Giả sử a/m =x, b/m= y. ( a,b, m thuộc z. m >0) và x <y. Cmr Nếu z= a + b/ 2.m thì x<z<y.
Làm theo tính chất a<b thì a + c <b + c
ta có: x<y
\(\Rightarrow\frac{a}{m}< \frac{b}{m}\Rightarrow a< b\)
\(\Rightarrow a+a< b+a\)
\(\Rightarrow\frac{a+a}{2m}< \frac{a+b}{2m}\)
\(\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}\)
\(\Rightarrow\frac{a}{m}< \frac{a+b}{2m}\Rightarrow x< z\) (1)
ta có: a<b ( cmt)
=> a + b < b+b
\(\Rightarrow\frac{a+b}{2m}< \frac{b+b}{2m}\)
\(\Rightarrow\frac{a+b}{2m}< \frac{2b}{2m}=\frac{b}{m}\Rightarrow z< y\) (2)
Từ (1);(2) => x<z<y