Những câu hỏi liên quan
Nguyễn Vũ Nguyên Hồng
Xem chi tiết
Nguyễn Đức Trí
30 tháng 8 2023 lúc 23:08

Bạn xem lại đề bài, k có yêu cầu gì?

Bình luận (0)
Mitsuha Miyamizu
Xem chi tiết
Nguyễn Ngọc Linh
Xem chi tiết
Nguyễn Ngọc Linh
Xem chi tiết
Nguyễn Minh Phương
Xem chi tiết
Phạm Thành Trung
Xem chi tiết
Nguyễn Ngọc Linh
Xem chi tiết
Trần Phúc
5 tháng 8 2017 lúc 18:59

b)

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2007}{2009}\)

\(=\frac{1}{1.3}+\frac{1}{2.3}+\frac{1}{2.5}+...+\frac{2}{x.\left(x+1\right)}=\frac{2007}{2009}\)

\(=\frac{1}{2}.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2007}{2009}\)

\(=\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2007}{2009}:\frac{1}{2}\)

\(=\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{4018}\)

\(=\frac{1}{x-1}=\frac{1}{2009}\Leftrightarrow x+1=2009\)

\(\Rightarrow x=2009-1=2008\)

Bình luận (0)
Nguyễn Ngọc Linh
6 tháng 8 2017 lúc 9:33

Bạn Phúc Trần Tấn bạn có biết làm phần a ko?Giúp mk với ạ!Mai mk cần rùi

Bình luận (0)
Ngự thủy sư
Xem chi tiết
Đen đủi mất cái nik
30 tháng 9 2018 lúc 19:54

Áp dụng bđt Holder ta được:

\(9\left(a^3+b^3+c^3\right)=3.3.\left(a^3+b^3+c^3\right)=\left(1+1+1\right)\left(1+1+1\right)\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)^3=1\Rightarrow A\ge\frac{1}{9}\)

Dấu bằng xảy ra \(\Leftrightarrow x=y=z=\frac{1}{3}\)

Bình luận (0)
Đen đủi mất cái nik
1 tháng 10 2018 lúc 19:36

c/m bất đẳng thức Holder:

Cho a,b,c,x,y,z,m,n,p là các số thực dương. Khi đó ta có:

\(\left(a^3+b^3+c^3\right)\left(x^3+y^3+z^3\right)\left(m^3+n^3+p^3\right)\ge\left(axm+byn+czp\right)^3\)

Sử dụng bất đẳng thức AM-GM (Cô-si) ta có:

\(\frac{a^3}{a^3+b^3+c^3}+\frac{x^3}{x^3+y^3+z^3}+\frac{m^3}{m^3+n^3+p^3}\ge\frac{3axm}{\sqrt[3]{\left(a^3+b^3+c^3\right)\left(x^3+y^3+z^3\right)\left(m^3+n^3+p^3\right)}}\)

Tương tự:

\(\frac{b^3}{a^3+b^3+c^3}+\frac{y^3}{x^3+y^3+z^3}+\frac{n^3}{m^3+n^3+p^3}\ge\frac{3byn}{\sqrt[3]{\left(a^3+b^3+c^3\right)\left(x^3+y^3+z^3\right)\left(m^3+n^3+p^3\right)}}\)

\(\frac{c^3}{a^3+b^3+c^3}+\frac{z^3}{x^3+y^3+z^3}+\frac{p^3}{m^3+n^3+p^3}\ge\frac{3czp}{\sqrt[3]{\left(a^3+b^3+c^3\right)\left(x^3+y^3+z^3\right)\left(m^3+n^3+p^3\right)}}\)

\(\Rightarrow3\ge\frac{3axm+3byn+3czp}{\sqrt[3]{\left(a^3+b^3+c^3\right)\left(x^3+y^3+z^3\right)\left(m^3+n^3+p^3\right)}}\)

\(\Leftrightarrow\sqrt[3]{\left(a^3+b^3+c^3\right)\left(x^3+y^3+z^3\right)\left(m^3+n^3+p^3\right)}\ge axm+byn+czp\)

\(\Leftrightarrow\left(a^3+b^3+c^3\right)\left(x^3+y^3+z^3\right)\left(m^3+n^3+p^3\right)\ge\left(axm+byn+czp\right)^3\)

Đẳng thức xảy ra khi các biến bằng nhau

Bình luận (0)
Trang Nguyễn
Xem chi tiết
👁💧👄💧👁
7 tháng 9 2021 lúc 16:04

1) Với x > 0 ta có:

\(x+\dfrac{1}{x}\ge2\\ \Leftrightarrow\dfrac{x^2+1}{x}\ge\dfrac{2x}{x}\\ \Leftrightarrow x^2+1\ge2x\left(\text{vì }x>0\right)\\ \Leftrightarrow x^2-2x+1\ge0\\ \Leftrightarrow\left(x-1\right)^2\ge0\left(\text{luôn đúng }\forall x>0\right)\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\). Vậy BĐT được chứng mình với x > 0.

Bình luận (0)
Nguyễn Lê Phước Thịnh
7 tháng 9 2021 lúc 16:04

1: Áp dụng Bđt cosi, ta được:

\(x+\dfrac{1}{x}\ge2\cdot\sqrt{x\cdot\dfrac{1}{x}}=2\)

Bình luận (0)
👁💧👄💧👁
7 tháng 9 2021 lúc 16:07

2a) 

Có \(abcd=1\Rightarrow ab=\dfrac{1}{cd}\)

Áp dụng BĐT vừa chứng mình ở bài 1, ta có:

\(cd+\dfrac{1}{cd}\ge2\Leftrightarrow ab+cd\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow cd=1\)

Vậy BĐT được chứng minh với a,b,c,d > 0 thỏa mãn abcd = 1.

 

Bình luận (0)