Tìm sao cho:
a) chia hết cho x;
b) x+ 9 chia hết cho x +1
c) 2x +1 chia hết cho x -1
Tìm sao cho:
a) chia hết cho x;
b) x+ 9 chia hết cho x +1
c) 2x +1 chia hết cho x -1
a, \(x\) + 6 ⋮ \(x\) đkxđ \(x\) \(\ne\) 0
⇔ 6 ⋮ \(x\)
\(x\) \(\in\) {1; 2; 3; 6}
b, \(x\) + 9 \(⋮\) \(x\) + 1 đkxđ \(x\) \(\ne\) -1
\(x\) + 1 + 8 ⋮ \(x\) + 1
8 \(⋮\) \(x\) + 1
\(x\) + 1 \(\in\) Ư(8) = { 1; 2; 4; 8}
\(x\) \(\in\) { 0; 1; 3; 7}
c, 2\(x\) + 1 ⋮ \(x\) - 1 đkxđ \(x\) \(\ne\) 1
2\(x\) - 2 + 3 ⋮ \(x\) -1
2.(\(x\) - 1) + 3 \(⋮\) \(x\) - 1
\(x\) - 1 \(\in\)Ư(3) = { 1; 3}
\(x\) \(\in\) { 2; 4}
Tìm x thuộc N sao cho:
a) x + 4 chia hết cho x
b) x + 6 chia hết cho x + 2
Tìm x thuộc N sao cho:
a) x + 4 chia hết cho x
=>4 chia hết cho x
x thuộc Ư(4)={1;4} do x thuộc N
b) x + 6 chia hết cho x + 2
=>x+2+4 chia hết cho x + 2
=> 4 chia hết cho x + 2
=> x+2 thuộc Ư(4)={1;4} do x thuộc N
=> x=-1 (loại) hoặc x=2
Bài 3: Khi chia số tự nhiên a cho 36 ta được số dư 12. Hỏi a có chia hết cho 4 ; cho 9 không? Vì sao?
Bài 4: Tìm x, biết
a) x ∈ B(7) và x ≤ 35
b) x ∈ Ư(18) và 4 < x ≤ 10
Bài 5: Tìm x ∈ N sao cho:
a) 6 chia hết cho x
b) 8 chia hết cho x + 1
c) 10 chia hết cho x - 2
Bài 3:
a chia 36 dư 12 số đó có dạng \(a=36k+12\left(k\in N\right)\)
\(\Rightarrow a=4\left(9k+3\right)\) nên a chia hết cho 4
Mà: \(9k\) ⋮ 3 ⇒ \(9k+3\) không chia hết cho 3
Nên a không chia hết cho 3
Bài 4:
a) \(x\in B\left(7\right)\) \(\Rightarrow x\in\left\{0;7;14;21;28;35;42;49;...\right\}\)
Mà: \(x\le35\)
\(\Rightarrow x\in\left\{0;7;14;21;28;35\right\}\)
b) \(x\inƯ\left(18\right)\Rightarrow x\in\left\{1;2;3;6;9;18\right\}\)
Mà: \(4< x\le10\)
\(\Rightarrow x\in\left\{6;9\right\}\)
Bài 5:
a) 6 chia hết cho x
\(\Rightarrow x\inƯ\left(6\right)\)
\(\Rightarrow x\in\left\{1;2;3;6\right\}\)
b) \(8\) chia hết cho \(x+1\)
\(\Rightarrow x+1\inƯ\left(8\right)\)
\(\Rightarrow x+1\in\left\{1;2;4;8\right\}\)
\(\Rightarrow x\in\left\{0;1;3;7\right\}\)
c) 10 chia hết cho \(x-2\)
\(\Rightarrow x-2\inƯ\left(10\right)\)
\(\Rightarrow x-2\in\left\{1;2;5;10\right\}\)
\(\Rightarrow x\in\left\{3;4;7;12\right\}\)
Bài 1:Cho a1,a2,....,a2018 thuộc Z
CMR:a1+a2+...+a2018 chia hết cho 30 khi và chỉ khi a1^5 + a2^5 +...+ a2018^5 chia hết cho 30\
Bài 2: Tìm x,y thuộc N* sao cho x+y+1 chia hết cho xy
Bài 3: tìm x,y thuộc N* sao cho y+1 chia hết cho x, x+1 chia hết cho y
Bài 4:Tìm x,y thuộc N* sao cho y+2 chia hết cho x, x+2 chia hết cho y
Bài 5: Tìm x,y thuộc N* sao cho 2x+1 chia hết cho y, 2y+1 chia hết cho x
Bài 6: CMR: Với mọi n thuộc Z ta có n^5 + 5n chia hết cho 6
Bài 7:CMR: Với mọi n thuộc Z ta có n(2n+7)(7n+1) chia hết cho 6
Giúp mình nhé, cảm ơn các bạn nhiều!!!
6 \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)
vì n,n-1 là 2 số nguyên lien tiếp \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)
n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)
\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)
7 \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)
\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)
\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)
\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)
\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
......................?
mik ko biết
mong bn thông cảm
nha ................
Bài 1.Tìm số nguyên n sao cho n+6 chia hết cho n+2
Bài 2. Tìm số nguyên n sao cho 3n+2 chia hết cho n+1
Bài 3. Tìm số nguyên x biết (x-2).(x+3)<0
Bài 4. Tìm số nguyên x biết (4-2x).(x+3)>0
Điền dấu * thích hợp để
a) 5*8 chia hết cho 3
b) 6*3 chia hết cho 9
c) 43* chia hết cho 3 và 5
5. Tìm x thuộc N sao cho
x thuộc B (12) và 20 < x < 50
20 chia hết x và x > 6
Tìm x thuộc Z sao cho:
a) 6 chia hết cho x
b) 8 chia hết cho x +1;
c) 10 chia hết cho x - 2.
a) x Î Ư(6) = {-6; -3; -2; -l; l; 2; 3; 6}.
b) x + l Î Ư (8) = {- 8; -4; -2; -1; 1; 2; 4; 8}. Từ đó tìm được
x Î{-9; -5; -3; -2; 0; 1; 3; 7}.
c) x - 2 Î Ư(10) = {-10; -5; - 2; -1; 1; 2; 5; 10). Từ đó tìm được
x Î {-8; -3; 0; l; 3; 5; 7; 12}.
Tìm x thuộc Z sao cho:
a) 6 chia hết cho x
b) 8 chia hết cho x +1;
c) 10 chia hết cho x - 2.
tìm N x sao cho x+10 chia hết cho 5 ; x-18 chia hết cho 6 +21 chia hết cho 7 và x>500<700