tìm x y thỏa mãn;
1 (x+2016)2016 + |y-2017|2017 =0
2 |x+1|2018 +\(\sqrt{3y-1}\)
Tìm các số nguyên x,y thỏa mãn:6xy+4x-9y-7=0
Tìm giá trị nhỏ nhất của A=x^3+y^3+xy với x,y dương thỏa mãn x+y=1
Tìm các số nguyên x,y thỏa mãn 2x^2+1/x^2+y^2/4=4 sao cho xy đạt giá trị lớn nhất
HELP !
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Cho x; y thỏa mãn (x+y)^2+4x+1 là số chính phương. Chứng minh rằng x=y
plss help!
$x=5; y=-3$ thì $(x+y)^2+4x+1$ là scp mà $x\neq y$.
Bạn xem lại đề.
1, tìm các số nguyên dương x,y,z thỏa mãn 8x+9y+10z=100 và x+y+z>11
2,tìm x là số nguyên lớn nhất thỏa mãn x< ( √5 +2)^8
3, tìm các số tự nhiên x,y,z thỏa mãn đồng thời (x-1) ³ +y ³ -2z ³ =0 và x+y+x=1
đg cần gấp lắm , help me!!
tìm x y thuộc z biết thỏa mãn 3^x + y^3 = 1
Help me !!!!!!!!
đoạn 3x=1-27k3-27k2-9k-1
3x=-9k(3k2+3k+1)
Nếu k=-1=> 3k2+3k+1=1=> x=2 (TM)
Nếu k< hoặc = -2 thì -k(3k2+3k+1) là luỹ thừa của 3
Mà 3k2+3k+1 không chia hết cho 3 => vô nghiệm
KL: (x;y)=(0;1);(2;-2)
Bài 1. Tìm các số thực x thỏa mãn: |x − 1| = 2x − 1
Bài 2. Tìm các số thực x thỏa mãn: |3x − 1| + |x − 2| = 4
Bài 3. Tìm các số thực x thỏa mãn: |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36
Bài 4. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0
Help me please
tìm các số nguyên x,y thỏa mãn 6xy - 10x + 3y = 12
Help tui :>>
=>3y(2x+1)-10x-5=7
=>(2x+1)(3y-5)=7
=>\(\left(2x+1;3y-5\right)\in\left\{\left(1;7\right);\left(7;1\right)\right\}\)(Vì x,y là số nguyên)
=>\(\left(x,y\right)\in\left\{\left(0;6\right);\left(3;2\right)\right\}\)
Tìm ba số nguyên tố x,y,z thỏa mãn đẳng thức: xy+1=z
help
Ta thấy nếu x lẻ => VT chẵn => z chẵn ko phải số nguyên tố
Vậy x chỉ là số chẵn mà nguyên tố => x= 2
Với y=2 => z= 5 thỏa đk đề bài
Nếu y>2 => y lẻ (vì y nguyên tố)
=> y =2k +1
=> 2^(2k+1) +1 = 2.4^k + 1 = 2.(3p+1) + 1 = 3m
Như vậy khi x=2 và y nguyên tố > 2 thì VT luôn chia hết cho 3
=>z chia hết cho 3 không thỏa đk
Vậy x=y=2; z= 5 là duy nhất
Trả lời
Ta thấy nếu x lẻ => VT chẵn => z chẵn ko phải số nguyên tố
Vậy x chỉ là số chẵn mà nguyên tố => x= 2
Với y=2 => z= 5 thỏa đk đề bài
Nếu y>2 => y lẻ (vì y nguyên tố)
=> y =2k +1
=> 2^(2k+1) +1 = 2.4^k + 1 = 2.(3p+1) + 1 = 3m
Như vậy khi x=2 và y nguyên tố > 2 thì VT luôn chia hết cho 3
=>z chia hết cho 3 không thỏa đk
Vậy x=y=2; z= 5 là duy nhất
Với x=2; y=5 thì 2^5 + 1 =33 đâu phải số nguyên tố....
xy+1=zxy+1=z, ⇒z>2⇒z>2 ⇒z⇒z lẻ ⇒xy+1⇒xy+1 lẻ ⇒x⇒x chẵn ⇒x=2⇒x=2
Với y=2y=2: ⇒z=5⇒z=5 (thỏa mãn)
Với y>2y>2: 2y+1⋮2+1⇔z⋮32y+1⋮2+1⇔z⋮3 vì zz là số nguyên tố lớn hơn 33 mà z⋮3z⋮3 nên trường hợp này không tồn tại x,y,zx,y,z thỏa mãn đề bài (2y+1⋮2+12y+1⋮2+1 vì yy lẻ)
Vậy (x,y,z)(x,y,z)=(2,2,5)
TÌM X;Y NGUYÊN THỎA MÃN:
3 . x +7=y.(x-3)
please help me
Help me!!!!
Bt Tết khó quá
Giải giùm vs
Tìm x,y thỏa mãn x^2+y^2+1=xy+x+y
từ x^2+y^2+xy=1 => (x - 1/2*y)^2 + 3/4*y^2 = 1
đặt x - 1/2*y = sina và √3/2*y = cosa <> y = 2cosa / √3 và x = sina + cosa /√3
thay vào b ta có
b = (sina + cosa/√3)^2 - ( sina + cosa/√3). 2cosa/√3 + 8/3*(cosa)^2
= (sina)^2 + sin2a/√3 + (cosa)^2/3 - sin2a/√3 - 2/3*(cosa)^2 + 8/3*(cosa)^2
= (sina)^2 + 7(cosa)^2 / 3 = 1+ 4(cosa)^2 / 3 = 1 + 2(1 + cos2a) / 3 = 5/3 + 2cos2a/ 3
=> 1=< b <=7/3
+ min = 1 khi cos2a = -1 hay cosa = 0 <> y = 0 và x = +- 1
+ max = 7 / 3 khi cos2a = 1 hay sina = 0 <> x = 1 + 1/√3 và y = 2 / √3 hoạc x = 1 - 1 / √3
và y = -2 / √3
Nghe mình nói giải như bạn ấy theo mình phức tạp hãy giải theo phương pháp lớp 8 nha hahaha
Ta có x^2+y^2+1=x+y+xy
Tương đương x^2+y^2+1-xy-x-y=0
ta nhân hai vế cho 2 ta được
2x^2+2y^2+2-2xy-2x-2y=0
(x^2-2xy+y^2)+(x^2-2x+1)+(y^2-2y+1)=0
dùng hằng đẳng thức số 2 ta có hahaha
(x-y)^2 + (x-1)^2 +(y-1)^2=0
vì tất cả là bình phương nên ko có cái nào bé hơn 0 nên mỗi cái sẽ bằng 0
(x-1)^2=0 suy ra x=1
(y-1)^2=0 suy ra y=1
(x-y)^2=0 suy ra x=y thỏa mãn vì x=y=1
Vậy x=1,y=1 cảm ơn bạn đã cho tôi một bài toán hay hahaa
tìm x,y thỏa mãn các phương trình sau ae help tui vs r tôi tim cho
xy + 2x + y = 11
<=> x(y + 2) + y + 2 = 13
<=> (x + 1)(y + 2) = 13
Lập bảng xét các trường hợp
x + 1 | 1 | 13 | -1 | -13 |
y + 2 | 13 | 1 | -13 | -1 |
x | 0 | 12 | -2 | -14 |
y | 11 | -1 | -15 | -3 |
Vậy các cặp (x;y) thỏa là (0;11) ; (12 - 1) ; (-2;-15) ; (-14 ; -3)
xy + 2x + y = 11