Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hữu Quang
Xem chi tiết

Bài 3:

a, (\(x\)+y+z)2

=((\(x\)+y) +z)2

= (\(x\) + y)2 + 2(\(x\) + y)z + z2

\(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2

=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz

 

b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))

\(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3 

Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé

c,

(\(x\) + y + z)3 

=(\(x\) + y)3 + 3(\(x\) + y)2z + 3(\(x\)+y)z2 + z3

\(x^3\) + 3\(x^2\)y + 3\(xy^{2^{ }}\) + y3 +  3(\(x\)+y)z(\(x\) + y + z) + z3

\(x^3\) + y3 + z3 + 3\(xy\)(\(x\) + y) + 3(\(x+y\))z(\(x+y+z\))

\(x^3\) + y3 + z+ 3(\(x\) + y)( \(xy\) + z\(x\) + yz + z2)

\(x^3\) + y3 + z3 + 3(\(x\) + y){(\(xy+xz\)) + (yz + z2)}

\(x^3\) + y3 + z3 + 3(\(x\) + y){ \(x\)( y +z) + z(y+z)}

\(x^3\) + y3 + z3 + 3(\(x\) + y)(y+z)(\(x+z\)) (đpcm)

 

 

Phạm Phương Linh
Xem chi tiết
Trên con đường thành côn...
4 tháng 8 2021 lúc 21:10

undefined

Nguyễn Hoàng Dương
11 tháng 4 lúc 21:42

kẻ lười biếng nạp card, đi ô tô

Nguyễn Võ Thảo Vy
Xem chi tiết
Takanashi Hikari
Xem chi tiết
Thịnh Gia Vân
19 tháng 12 2020 lúc 20:13

Bài này ez thôi, làm mãi rồi.

Theo đề bài, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)

=>\(\dfrac{xy+yz+xz}{xyz}=0\)

=> xy+yz+zx=0

=> \(\left\{{}\begin{matrix}xy=-yz-zx\\yz=-xy-zx\\zx=-xy-yz\end{matrix}\right.\)

Ta có: x2+2yz=x2+yz-xy-zx=(x-y)(x-z)

           y2+2xz=y2+xz-xy-yz=(x-y)(z-y)

           z2+2xy=z2+xy-yz-xz=(x-z)(y-z)

=> \(\dfrac{yz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xz}{\left(x-y\right)\left(z-y\right)}+\dfrac{xy}{\left(x-z\right)\left(y-z\right)}=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\dfrac{\left(x-y\right)\left(x-z\right)\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=1\)

 

 

 

Oanh Trần
Xem chi tiết
Thanh Tâm
Xem chi tiết
Trương Thị Thu Thảo
Xem chi tiết
knight_Lucifer
Xem chi tiết
Đỗ Uyển Dương
Xem chi tiết
Nguyệt
4 tháng 3 2019 lúc 23:07

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{xy+yz+xz}{xyz}=0\Rightarrow xy+yz+xz=0\Rightarrow\hept{\begin{cases}xy=-yz-xz\\yz=-xy-xz\\xz=-yz-xy\end{cases}}\)

\(x^2+yz+yz=x^2-xy-xz+yz=x.\left(x-y\right)-z.\left(x-y\right)=\left(x-y\right).\left(x-z\right)\)

tương tự bn phân tích rồi quy đồng về mẫu chung :))