Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Gia Hưng
Xem chi tiết
Nguyễn Minh Kiên
17 tháng 4 2023 lúc 15:52

C gbcgghfdhsgxwvdgdrgdtdgst

jin rin
Xem chi tiết
Van Toan
25 tháng 12 2022 lúc 20:04

\(4^0+4^1+4^2+4^3+...+4^{35}\\ 4S=4^1+4^2+4^3+4^4+...+4^{36}\\ 4S-S=\left(4^1+4^2+4^3+4^4+...+4^{36}\right)-\left(4^0+4^1+4^2+4^3+...+4^{35}\right)\\ 3S=4^{36}-1=64^{12}-1\\ Vì64^{12}-1< 64^{12}\\ \Rightarrow3S< 64^{12}\)

Nguyễn Việt Lâm
25 tháng 12 2022 lúc 20:22

Ta có: \(64^{12}=\left(4^3\right)^{12}=4^{36}\)

\(S=4^0+4^1+...+4^{34}+4^{35}\)

\(\Rightarrow4S=4^1+4^2+...+4^{35}+4^{36}\)

\(\Rightarrow4S-S=4^{36}-4^0\)

\(\Rightarrow3S=4^{36}-1< 4^{36}\)

Vậy \(3S< 64^{12}\)

Nguyen Thi Dan Ha
Xem chi tiết
♛☣ Peaceful Life ☣♛
21 tháng 2 2020 lúc 15:04

4S = 4 + 42 + 43 + 44 + ... + 4120

4S - S = 4120 - 1

3S = 4120 - 1

3S + 1 = 4120 - 1 + 1

Vì 43 = 64 < 34 = 81\(\hept{\begin{cases}3S+1=4^{120}=\left(4^3\right)^{40}\\B=3^{160}=\left(3^4\right)^{40}\end{cases}}\)

\(\Rightarrow\left(4^3\right)^{40}< \left(3^4\right)^{40}\)

\(\Rightarrow3S+1< B\)

Vậy \(3S+1< B\)

Chúc bạn học tốt !!!

Khách vãng lai đã xóa
Xem chi tiết
Phạm Nguyễn Tiến Đạt
Xem chi tiết
Vuquangminh2611
4 tháng 10 2022 lúc 20:58

ai bt tự làm

 

ĐỊT CON MẸ MÀY
15 tháng 4 2023 lúc 15:33

ngu tự chịu

Kai kai kai
14 tháng 10 2024 lúc 5:54

Triệt tiêu hết mấy số kia rồi á bạn

Phạm Nguyễn Tiến Đạt
Xem chi tiết
Nguyễn Lê Quang
Xem chi tiết
Nguyễn Thị Hà Vy
29 tháng 9 2016 lúc 20:43

tổng \(\frac{4^{21}-4}{3}\)đó là tổng S nhá                                                                                                                                                     ta có :\(4^{21}=4^{19}.4^3\)-4+4                                                                                                                                                             vậy 17 . 4^19 lớn nơn

Huỳnh Bá Tuân
Xem chi tiết

Ta có: \(S=\frac13-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+\cdots-\frac{100}{3^{100}}\)

=>\(3A=1-\frac23+\frac{3}{3^2}-\frac{4}{3^3}+\cdots-\frac{100}{3^{99}}\)

=>\(3A+A=1-\frac23+\frac{3}{3^2}-\frac{4}{3^3}+\cdots-\frac{100}{3^{99}}+\frac13-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+\cdots-\frac{100}{3^{100}}\)

=>\(4A=1-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

Đặt \(B=-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots-\frac{1}{3^{99}}\)

=>\(3B=-1+\frac13-\frac{1}{3^2}+\cdots-\frac{1}{3^{98}}\)

=>\(3B+B=-1+\frac13-\frac{1}{3^2}+\cdots-\frac{1}{3^{98}}-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots-\frac{1}{3^{99}}=-1-\frac{1}{3^{99}}=\frac{-3^{99}-1}{3^{99}}\)

=>\(4B=\frac{-3^{99}-1}{3^{99}}\)

=>\(B=\frac{-3^{99}-1}{4\cdot3^{99}}\)

Ta có: \(4A=1-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(=1+\frac{-3^{99}-1}{4\cdot3^{99}}-\frac{100}{3^{100}}=1+\frac{-3^{100}-3-400}{4\cdot3^{100}}=1-\frac14-\frac{403}{4\cdot3^{100}}<\frac34\)

=>\(A<\frac{3}{16}\)

\(\frac{3}{16}<\frac{3.2}{16}=\frac15\)

nên \(A<\frac15\)

Funny Suuu
Xem chi tiết
Trịnh Quỳnh Nhi
4 tháng 1 2018 lúc 17:33

Ta có

S=40+41+42+...+434+435

=>4S=41+42+43+...+435+436

=> 4S-S=(40+41+42+...+434+435)- (41+42+43+...+435+436)

=> 3S=436-40=436-1=6412-1

=> 3S<6412