Chứng minh rằng phân số sau tối giản
\(\dfrac{2^{2024}+3}{2^{2023}+1}\) tối giản
Chứng minh rằng các phân số sau tối giản
c)\(\dfrac{2^{2024}+3}{2^{2023}+1}\) tối giản
Lời giải:
Gọi $d$ là ƯCLN $(2^{2024}+3, 2^{2023}+1)$
Ta có:
$2^{2024}+3\vdots d$
$2^{2023}+1\vdots d$
$\Rightarrow 2^{2024}+3-2(2^{2023}+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
$\Rightarrow \frac{2^{2024+3}{2^{2023}+1}$ là ps tối giản.
Chứng minh rằng các phân số sau tối giản
a) \(\dfrac{2n+7}{2n+3}\) (n ∈ N)
b)\(\dfrac{6n+5}{8n+7}\)(n ∈ N)
c)\(\dfrac{2^{2024}+3}{2^{2023}+1}\) tối giản
a: Gọi d=ƯCLN(2n+7;2n+3)
=>2n+7 chia hết cho d và 2n+3 chia hết cho d
=>2n+7-2n-3 chia hết cho d
=>4 chia hết cho d
mà 2n+7 lẻ
nên d=1
=>PSTG
b: Gọi d=ƯCLN(6n+5;8n+7)
=>4(6n+5)-3(8n+7) chia hết cho d
=>-1 chia hết cho d
=>d=1
=>PSTG
\(\dfrac{2^{2023}+3^{2023}}{2^{2024}+3^{2024}}\) chứng minh phấn số đó tối giản
chứng minh rằng mỗi phân số sau đều tối giản với mọi số n
a)\(\dfrac{2n+1}{3n+2}\)
b) \(\dfrac{3n+2}{5n+3}\)
a: Gọi d=UCLN(2n+1;3n+2)
\(\Leftrightarrow6n+4-6n-3⋮d\)
=>d=1
=>Phân số tối giản
b: Gọi d=UCLN(3n+2;5n+3)
\(\Leftrightarrow15n+10-15n-9⋮d\)
=>d=1
=>Phân số tối giản
chứng minh rằng mỗi phân số sau đều tối giản với mọi số n
a) \(\dfrac{2n+1}{3n+2}\)
b) \(\dfrac{3n+2}{5n+3}\)
a: Gọi d=UCLN(2n+1;3n+2)
\(\Leftrightarrow6n+4-6n-3⋮d\)
=>d=1
=>Phân số tối giản
b: Gọi d=UCLN(3n+2;5n+3)
\(\Leftrightarrow15n+10-15n-9⋮d\)
=>d=1
=>Phân số tối giản
chứng minh rằng phân số sau tối giản với mọi số tự nhiên n
\(\dfrac{3n+2}{5n+3}\)
Gọi ƯCLN(3n + 2, 5n + 3) = d (d thuộc N*)
Ta có:
3n + 2 chia hết cho d
5n + 3 chia hết cho d
<=> 5(3n + 2) chia hết cho d = (15n + 10) chia hết cho d
<=> 3(5n +3) chia hết cho d = (15n + 9) chia hết cho d
=> (15n + 10) - (15n + 9) chia hết cho d = 1 chia hết cho d
=> d = 1
=> 3n + 2 và 5n + 3 là hai số nguyên tố cùng nhau.
Vậy Phân số là phân số tối giản.
tự làm nha thấy đúng cho mik một like
a, Chứng minh rằng với mọi số tự nhiên n thì \(\dfrac{n+1}{2n+3}\) là phân số tối giản
b, Chứng minh rằng với mọi số tự nhiên a, b thì \(\dfrac{7a+5b}{9a+4b}\) là phân số tối giản
a/
Gọi $d=ƯCLN(n+1, 2n+3)$
$\Rightarrow n+1\vdots d; 2n+3\vdots d$
$\Rightarrow 2n+3-2(n+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$
b/
Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé.
Bạn xem lại đề.
Chứng minh rằng 3n-2 trên 4n-3 là phân số tối giản
Cho a trên b là một phân số chưa tối giản. Chứng minh rằng các phân sau chưa tối giản
a) a trên a-b
b) 2a trên a-2b
18. Chứng minh rằng các phân số sau là phân số tối giản với mọi số tự nhiên n:
a) \(\dfrac{n+1}{2n+3}\)
b) \(\dfrac{2n+3}{4n+8}\)
c) \(\dfrac{3n+2}{5n+3}\)
Gọi Ư(n+1;2n+3) = d ( \(d\in\)N*)
\(n+1=2n+2\left(1\right);2n+3\left(2\right)\)
Lấy (2 ) - (1) ta được : \(2n+3-2n+2=1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
Gọi Ư\(\left(3n+2;5n+3\right)=d\)( d \(\in\)N*)
\(3n+2=15n+10\left(1\right);5n+3=15n+9\left(2\right)\)
Lấy (!) - (2) ta được : \(15n+10-15n-9=1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
a) Gọi \(d\) là UCLN \(\left(n+1,2n+3\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\left(đpcm\right)\)
b) Gọi \(d\) là \(UCLN\left(2n+3,4n+8\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)
\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n+3 là số lẻ nên
\(\Rightarrow d=1\left(đpcm\right)\)
c) Gọi \(d\) là \(UCLN\left(3n+2;5n+3\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)
\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)
\(\Rightarrow d=1\left(đpcm\right)\)