Cho N = \(\frac{9}{\sqrt{x}-5}\) . Tìm x thuộc Z để N có giá trị nguyên
Cho N=\(\frac{9}{\sqrt{x-5}}\). Tìm x thuộc Z để Ncos giá trị nguyên.
Cho N \(\frac{9}{\sqrt{x}-5}\), tìm x\(\in\)Z để N có giá trị nguyên
Để N có giá trị nguyên
\(\Rightarrow\frac{9}{\sqrt{x}-5}\) có giá trị nguyên
\(\Rightarrow9⋮\sqrt{x}-5\)
\(\Rightarrow\sqrt{x}-5\in\left\{-9;-3;-1;1;3;9\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{-4;2;4;6;8;14\right\}\)
\(\Rightarrow x\in\left\{4;16;36;64;196\right\}\)
Vậy ...........
cho N =\(\dfrac{9}{\sqrt{x}-5}\) , tìm x ϵ Z để N có giá trị nguyên
Lời giải:
Với $x$ nguyên, để $N$ nguyên thì $\sqrt{x}-5$ là ước của $9$
$\Rightarrow \sqrt{x}-5\in\left\{\pm 1;\pm 3;\pm 9\right\}$
$\Rightarrow \sqrt{x}\in\left\{4; 6; 8; 2; 14; -4\right\}$
Vì $\sqrt{x}\geq 0$ nên: $\sqrt{x}\in\left\{4; 6; 8; 2; 14\right\}$
$\Rightarrow x\in\left\{16; 36; 64; 4; 196\right\}$
98. Cho \(N=\frac{9}{\sqrt{x}-5}\). Tìm \(x\in Z\)để N có giá trị nguyên
\(N\in Z\Rightarrow9:^.\sqrt{x}-5\)mà\(\sqrt{x}\ge0\Rightarrow\sqrt{x}-5\ge-5\Rightarrow\sqrt{x}-5\in\left\{-3;-1;1;3;9\right\}\Rightarrow\sqrt{x}\in\left\{2;4;6;8;14\right\}\)
\(\Rightarrow x\in\left\{4;16;36;64;196\right\}\)
1.So sánh: \(\sqrt{63-27}\) và\(\sqrt{63}-\sqrt{27}\)
2.Cho N = \(\frac{9}{\sqrt{x}-5}\) Tìm x thuộc Z để N có giá trị nguyên
Cho M=\(\frac{\sqrt{x-1}}{2}\) .Tìm x thuộc Z để N có giá trị nguyên.
- cho \(N=\frac{9}{\left(\sqrt{x-5}\right)}\)
Tìm x thuôc Z để N có giá trị nguyên
_ai làm đc cho 3 k_
Để N có giá trị bằng số nguyên thì 9 phải chia hết cho \(\sqrt{x-5}\)
9 chia hết cho những số thì những số đó \(\inƯ\left(9\right)=\left\{1;3;9\right\}\)
Ta thử từng giá trị:
Nếu x = 1 thì thì \(\sqrt{1-5}=\left(-2\right)\)(nhận)
Rồi cứ như vậy làm típ
Toán gì mà kì lạ vậy,lớp 3 chưa học!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Cho \(N=\frac{9}{\sqrt{x}-5}\), tìm x\(\in Z\)để \(N\)có giá trị nguyên
Cho N = \(\frac{9}{\sqrt{x}-5}\). Tìm x\(\in\)Z , để N có giá trị nguyên