so sánh
\(3^{4000}\)và \(9^{2000}\)
so sánh 34000 và 92000 bàng hai cách
Ta có: 92000= (32)2000= 34000
Vậy 34000 = 92000
cách 1:34000=(32)2000=92000
92000=92000
=>34000=92000
cách 2:
92000=(32)2000=34000
34000=34000
=>34000=92000
C1: \(3^{4000}=3^{4000}\)
\(9^{2000}=\left(3^2\right)^{2000}=3^{4000}\)
Vì: \(3^{4000}=3^{4000}\) => \(3^{4000}=9^{2000}\)
C2: \(3^{4000}=\left(3^4\right)^{1000}=81^{1000}\)
\(9^{2000}=\left(9^2\right)^{1000}=81^{1000}\)
Vì: \(81^{1000}=81^{1000}\) => \(3^{4000}=9^{2000}\)
so sánh
34000 và 92000 bằng 2 cách
C1 :\(3^{4000}\) và \(9^{2000}\)
\(9^{2000}=\left(3^2\right)^{2000}=3^{4000}\) và để nguyên \(3^{4000}\) để so sánh
=> \(3^{4000}=9^{2000}\)
C2 : \(3^{4000}\) và \(9^{2000}\)
\(3^{4000}=\left(3^2\right)^{2000}=9^{2000}\) và giữ nguyên \(9^{2000}\) để so sánh
=> \(3^{4000}=9^{2000}\)
K mk nha, mk nhanh nhất 100 %
Mk sẽ k lại bạn, cứ gửi link là mk k
C1 34000 = (32) 2000 = 92000
suy ra 34000 = 92000
C2 92000 = (32)2000 = 34000
suy ra 34000 = 92000
So sánh 34000 và 92000 bằng hai cách
\(3^{4000}va9^{2000}\)
\(3^{4000}=\left(3^2\right)^{2000}=>3^{4000}=3^{4000}\)
\(3^{4000}va9^{2000}\)
\(81^{1000}=81^{1000}\)
Ta có : 34000 = 34.1000 = ( 34 )1000 = 811000
92000 = 92.1000 = ( 92 )1000 = 811000
Vì 811000 = 811000
nên 34000 = 92000
so sánh( nâng cao số 1)
a) 34000và 92000
b) 2323và 3223
a)34000 và 92000
34000 = 34.1000 =(34)1000 = 811000
92000 = 92.1000 = (92)1000 = 811000
Vì 811000 = 811000 nên 34000 = 92000
Câu b tương tự, do ko có thời gian nên bạn tự làm nhé
K nha
92000=(32)2000=32.2000=3400
Vậy 34000=92000
b) 2323=2300.223
3223=3200.323
Trước hết so sánh 2300 và 3200
2300=(23)100=8100
3200=(32)100=9100
Do đó 3200 lớn hơn 2300
Còn 323 dĩ nhiên lớn hơn 223 vì cơ số lớn hơn
Do đó 3223 lớn hơn 2323
So sánh:\(3^{4000}\) và\(9^{2000}\) bằng hai cách.
(Ai trả lời nhanh,mình tik cho)
\(3^{4000}v\text{à}9^{2000}\)
\(=\left(3^3\right)^{2000}v\text{à}3^{4000}\)
\(=3^{4000}v\text{à}3^{6000}\)
\(\Rightarrow3^{6000}>3^{4000}\Leftrightarrow3^{4000}< 9^{2000}\)
So sánh :
\(3^{4000}\) và \(9^{2000}\) bằng 2 cách
Ta có 2 cách làm:
Cách 1: \(9^{2000}=\left(3^2\right)^{2000}=3^{4000}\)
Vậy \(3^{4000}=9^{2000}\)
Cách 2:
\(3^{4000}=\left(3^2\right)^{2000}=3^{4000}\) (1)
\(9^{2000}=\left(9^2\right)^{1000}=81^{1000}\) (2)
Từ (1) và(2) suy ra \(3^{4000}=9^{2000}\)
So sánh :
1) 34000 và 92000
2) 2332 và 3223
3) 9920 và 999910
1) Ta có: 92000 = (32)2000 = 34000
nên 34000 = 92000
a,so sánh 34000va 92000 bang 2cach
b,so sanh 2332 va 3223
a) ta có: 34000 = (34)1000 = 811000
92000 = (92)1000 = 811000
=> ....
C2: ta có: 92000 = (32)2000= 34000
b) ta có: 2332 < 2333 = (23)111 = 8111
3223 > 3222 = (32)111 = 9111
=> 8111 < 9111
=> 2332 < 3223
a) cách 1 :34000= 34x1000= (34)1000=811000
92000= 92x1000=(92)1000=811000
ta thấy : 811000=811000 => 34000=92000
Cách 2: 92000= (32)2000= 32x2000=34000
ta thấy ; 34000=34000 => 34000=92000
tk cho mk nha. phần b) để mk nghĩ vì mk mới học lớp 6. mk chắc phần a mk đã làm đúng. kết bạn nha
So Sánh
a) 2^225 và 3^150
b) 2^91 và 3^25
c) 27^8 và 81^4
d) 2^332 và 3^223
e) 3^4000 và 9^ 2000 ( bằng 2 cách)
a) ta có: 2225 = (23)75 = 875
3150 = (32)75 = 975 > 875
=> ...
b) ta có: 291 > 275 = (23)25 = 825 > 325
=> ...
c) ta có: 278 = (33)8 = 324
814 = (34)4 = 316 < 324
=>...
d)ta có: 2332 < 2333 = (23)111 = 8111
3223 > 3222 = (32)111 = 9111 > 8111
=>...
e)C1: ta có: 92000 = (32)2000 = 34000
C2: ta có: 34000 = (32)2000 = 92000
\(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(3^{150}=\left(3^2\right)^{75}=9^{75}\)
\(8< 9=>....\)