tìm x,y thỏa mãn phương trình sau 5x^2 - y^2 + 4xy - y = 0
Tìm tất cả các số nguyên dương x, y thỏa mãn phương trình
5x2+y2-4xy=6y-14x+170
Tìm x, y thỏa mãn phương trình \(x^2y^4-16xy^3+68y^2-4xy+x^2=0\)
\(\Leftrightarrow\left(x^2y^4-16xy^3+64y^2\right)+\left(4y^2-4xy+x^2\right)=0\)
\(\Leftrightarrow\left(xy^2-8y\right)^2+\left(2y-x\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy^2-8y=0\\2y-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy^2-8y=0\\x=2y\end{matrix}\right.\)
\(\Rightarrow2y.y^2-8y=0\)
\(\Leftrightarrow2y\left(y^2-4\right)=0\Rightarrow\left[{}\begin{matrix}y=0\Rightarrow x=0\\y=2\Rightarrow x=4\\y=-2\Rightarrow x=-4\end{matrix}\right.\)
Ttìm cặp số x, y nguyên thỏa mãn 5x^2 +y^2 -2xy+2x-6y+1<0
Tìm cặp số x,y thỏa 5x^2 +2y+y^2 -4x-40=0
Giải hệ phương trình sau:
xy(x-y)=2
9xy(3x-y)+6=26x^3 -2y^3
5x2+2y+y2-4x-40=0
△=(-4)2-4.5.(2y+y2-40)
△=16-40y-20y2+800
△=-(784+40y+20y2)
△=-(32y+8y+16y2+4y2+16+4+764)
△=-[(4y+4)2+(2y+2)2+764]<0
=>PHƯƠNG TRÌNH VÔ NGHIỆM.
Tìm x;y;z thỏa mãn
\(5x^2-y^2+4xy-9=0\)
Bài 1:
Tìm (x,y) thuộc Z thỏa mãn:
a) 5x^2 - 4xy + y^2 = 169
b) x^2 + y^2 - x - y = 8
c) x^3 - y^3 = 91
d) x^2 + x - y^2 = 0
Cho hệ phương trình sau: x+y=2,mx-y=1 b) Tìm m để hệ phương trình có nghiệm duy nhất (x;y) c) Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x-3y=5 d) Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn xy < 0 e) Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x+2y > 4 f) Tìm các giá trị của m để x;y là giá trị nguyên
b: Để hệ có nghiệm duy nhất thì \(\frac{1}{m}<>\frac{1}{-1}\)
=>m<>-1
c: Để hệ có nghiệm duy nhất thì m<>-1
\(\begin{cases}x+y=2\\ mx-y=1\end{cases}\Rightarrow\begin{cases}x+y+mx-y=2+1=3\\ x+y=2\end{cases}\)
=>\(\begin{cases}x\left(m+1\right)=3\\ x+y=2\end{cases}\Rightarrow\begin{cases}x=\frac{3}{m+1}\\ y=2-x=2-\frac{3}{m+1}=\frac{2m+2-3}{m+1}=\frac{2m-1}{m+1}\end{cases}\)
x-3y=5
=>\(\frac{3}{m+1}-\frac{3\left(2m-1\right)}{m+1}=5\)
=>3-3(2m-1)=5(m+1)
=>3-6m+3=5m+5
=>-6m+6=5m+5
=>-11m=-1
=>\(m=\frac{1}{11}\) (nhận)
d: xy<0
=>\(\frac{3}{m+1}\cdot\frac{2m-1}{m+1}<0\)
=>3(2m-1)<0
=>2m-1<0
=>\(m<\frac12\)
Kết hợp với m<>-1, ta được: \(\begin{cases}m<\frac12\\ m<>-1\end{cases}\)
e: x+2y>4
=>\(\frac{3}{m+1}+\frac{2\left(2m-1\right)}{m+1}>4\)
=>3+2(2m-1)>4(m+1)
=>3+4m-2>4m+4
=>1>4(sai)
=>m∈∅
f: Để x,y nguyên thì 3⋮m+1 và 2m-1⋮m+1
=>3⋮m+1 và 2m+2-3⋮m+1
=>3⋮m+1 và -3⋮m+1
=>3⋮m+1
=>m+1∈{1;-1;3;-3}
=>m∈{0;-2;2;-4}
Tìm tất cả các nghiệm nguyên dương x,y thỏa mãn phương trình: \(5x^2+6xy+2y^2+2x+2y-73=0\)
\(5x^2+2\left(3y+1\right)x+2y^2+2y-73=0\) (1)
\(\Delta'=\left(3y+1\right)^2-5\left(2y^2+2y-73\right)=-y^2-4y+366\)
\(\Delta'\) là số chính phương \(\Rightarrow-y^2-4y+366=k^2\)
\(\Leftrightarrow\left(y+2\right)^2+k^2=370=3^2+19^2=9^2+17^2\)
\(\Rightarrow\left[{}\begin{matrix}y+2=3\\y+2=19\\y+2=9\\y+2=17\end{matrix}\right.\) thế vào (1) tìm x nguyên dương
cho các số dương x, y thỏa mãn \(\dfrac{1}{x}+\dfrac{2}{y}=2\)
Tìm GTNN của A= \(5x^2+y-4xy+y^2\)
Tham khảo: Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học trực tuyến OLM